【題目】如圖,
,
、
、
分別平分
的內(nèi)角
、外角
、外角
.以下結(jié)論:①
∥
;②
;③
;④
;⑤
平分
.其中正確的結(jié)論有( )
![]()
A. 2個 B. 3個 C. 4個 D. 5個
【答案】C
【解析】分析:(1)說明∠9=∠ABC;(2)說明∠2+∠3=90°;(3)說明∠BDC=
∠BAC,而
∠BAC+∠ABC=90°;(4)由∠BEC=90°-
∠BAC判斷;(5)由∠BDC=
∠BAC,∠ADB=
∠ABC,而∠BAC與∠ABC不一定相等.
詳解:如圖,由題意可知,∠1=∠2,∠3=∠4,∠5=∠6=∠7,∠8=∠9,∠ABC=∠ACB.
①因為∠8+∠9=∠ABC+∠ACB,∠ABC=∠ACB,∠8=∠9,
所以2∠9=2∠ABC,所以∠9=∠ABC,所以AD∥BC,則①正確;
②因為,∠1=∠2,∠3=∠4,,∠1+∠2+∠3+∠4=180°,
所以∠2+∠3=90°,所以DB⊥BE,則②正確;
③因為∠6=∠2+∠BDC,2∠6=2∠2+∠BAC,
所以2(∠2+∠BDC)=2∠2+∠BAC,即∠BDC=
∠BAC,
因為∠BAC+∠ABC+∠ACB=180°,所以
∠BAC+∠ABC=90°,
即∠BDC+∠ABC=90°,則③正確;
④因為2∠3=∠A+∠ACB,2∠7=∠A+∠ABC,∠BEC=180°-(∠3+∠7),
所以∠BEC=180°-
(∠A+∠ACB+∠A+∠ABC)=90°-
∠BAC,
所以∠BAC+2∠BEC=180°,則④正確;
⑤因為AD∥BC,所以∠ADB=∠2,即∠ADB=
∠ABC,
因為∠BDC=
∠BAC,∠BAC與∠ABC不一定相等,
所以∠BDC與∠ADB不一定相等,則⑤錯誤.
故選C.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3,現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如表:
![]()
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)請你設(shè)計一種方案,不僅每小時支付的租金最少,又恰好能完成每小時的挖掘量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,AE平分∠BAD,CD與AE相交于點F,∠CFE=∠E,試說明AB∥DC,把下面的說理過程補充完整.
![]()
證明:∵AD∥BC(已知)
∴∠2=∠E(___________________________)
∵AE平分∠BAD(已知)
∴∠1=∠2 (_________________________)
∴∠1=∠E(___________________________)
∵∠CFE=∠E(已知)
∴∠1=∠______(______________________)
∴AB∥CD(_________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是形內(nèi)一點,若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為6、7、8,四邊形DHOG面積為(。
![]()
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?
操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒,摸球(qū)嶒灥囊螅合葦嚢杈鶆颍看蚊鲆粋球,記錄球的顏色,放回盒中,然后重復(fù)上述過程。
活動結(jié)果:摸球?qū)嶒灮顒右还沧隽?/span>50次,統(tǒng)計結(jié)果如下表:
![]()
推測計算:由上述的摸球?qū)嶒灴赏扑悖?/span>
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線
和
與
軸分別相交于點
和點
,設(shè)兩直線相交于點
,點
為
的中點,點
是線段
上一個動點(不與點
和
重合),連結(jié)
,并過點
作
交
于點
.
(
)判斷
的形狀,并說明理由.
(
)當(dāng)點
在線段
上運動時,四邊形
的面積是否為定值?若是,請求出這個定值;若不是,請說明理由.
(
)當(dāng)點
的橫坐標(biāo)為
時,在
軸上找到一點
使得
的周長最小,請直接寫出點
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
![]()
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com