解:(1)①將點(diǎn)(0,3)代入可得c=3,
又∵頂點(diǎn)P(2,-1),
∴可得出-

=2,

=-1,
解得:a=1,b=-4,
即可得拋物線的函數(shù)解析式為y=x
2-4x+3;
②由①得:y=x
2-4x+3=(x-1)(x+3),
故可得出A(1,0),B(3,0);
③設(shè)點(diǎn)(x,y)在對(duì)稱后的函數(shù)圖象上,則(-x,-y)在原函數(shù)圖象上,
故可得:-y=x
2+4x+3,y=-x
2-4x-3.
即關(guān)于原點(diǎn)成中心對(duì)稱的拋物線解析式為:y=-x
2-4x-3;
④平移后頂點(diǎn)落在原點(diǎn)的拋物線為y=x
2.
(2)①當(dāng)△EDB∽△AOC時(shí),

,
則ED=

,得E
1[m,

];
②當(dāng)△EDB∽△COA時(shí),

=

,即

=

,
則ED=3(m-3),得E
2(m,3m-9).
因?yàn)椤螮DB=∠AOC=90°,所以只有這兩種情況.
(3)在(2)的條件下,假設(shè)拋物線上存在點(diǎn)F,使四邊形ABEF為平行四邊形,
則EF=AB=2,點(diǎn)F橫坐標(biāo)m-2,縱坐標(biāo)等于點(diǎn)E的縱坐標(biāo),
當(dāng)點(diǎn)E坐標(biāo)為:E
1(m,

)時(shí),F(xiàn)
1(m-2,

)在拋物線上,
有

,
∴m=

或3(舍去),
這時(shí)F1(

,

),

.
②當(dāng)點(diǎn)E坐標(biāo)為:E
2(m,3m-9)時(shí),F(xiàn)
2(m-2,3m-9)在拋物線上,
則3m-9=(m-2)
2-4(m-2)+3?m
2-11m+24=0,
解得:m=8或3(舍去),這時(shí)F
2(6,15),S
平行四邊形ABEF=2×15=30.
綜上,存在m
1=

,S
平行四邊形=

;存在m
2=8,S
平行四邊形ABEF=30.
分析:(1)①根據(jù)函數(shù)過點(diǎn)C(0,3),頂點(diǎn)坐標(biāo)為(2,-1)可得出a、b、c的值,繼而可得出解析式.②根據(jù)函數(shù)解析式可求出A、B兩點(diǎn)的坐標(biāo).③設(shè)點(diǎn)(x,y)在對(duì)稱后的函數(shù)圖象上,則(-x,-y)在原函數(shù)圖象上,代入可得出對(duì)稱后的函數(shù)關(guān)系式.④關(guān)于y軸對(duì)稱的二次函數(shù)解析式為y=ax
2,結(jié)合①可得出答案.
(2)分別討論,①當(dāng)△EDB∽△AOC時(shí),②當(dāng)△EDB∽△COA時(shí),根據(jù)相似三角形的對(duì)應(yīng)邊成比例得出ED的長,繼而可得出點(diǎn)E的坐標(biāo).
(3)要使四邊形ABEF為平行四邊形,則點(diǎn)F橫坐標(biāo)m-2,縱坐標(biāo)等于點(diǎn)E的縱坐標(biāo),將點(diǎn)F的坐標(biāo)代入可得出m的值,繼而也可求出平行四邊形的面積.
點(diǎn)評(píng):此題考查了二次函數(shù)的綜合題,解答本題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)解析式的知識(shí),平行四邊形的性質(zhì)及相似三角形的性質(zhì),難度較大,注意細(xì)心求解.