分析 只要證明△DAE≌△ABF得AF=DE=4,AE=BF=5,由此即可解決問(wèn)題.
解答 解:
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∵∠BAF+∠DAF=90°,∠DAF+∠ADF=90°,
∴∠BAF=∠ADE,
∵BF⊥EF,DE⊥EF,
∴∠AFB=∠AED,
在△DAE和△ABF中,
$\left\{\begin{array}{l}{∠AED=∠AFB}\\{∠BAF=∠ADE}\\{AD=AB}\end{array}\right.$,
∴△DAE≌△ABF,
∴AF=DE=4,AE=BF=5,
∴EF=AF+AE=4+5=9.
故答案為9.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、正方形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形,學(xué)會(huì)利用等角的余角相等證明角相等,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 34° | B. | 54° | C. | 46° | D. | 44° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com