【題目】定義:和三角形一邊和另兩邊的延長線同時(shí)相切的圓叫做三角形這邊上的旁切圓.
如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.
(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.
(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,
,試作出分別以
,
為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程.
![]()
【答案】(1) D、E、F三點(diǎn)是同在一條直線上.(2) 6x2﹣13x+6=0.
【解析】
(1)利用切線長定理及梅氏定理即可求證;
(2)利用相似和韋達(dá)定理即可求解.
解:(1)結(jié)論:D、E、F三點(diǎn)是同在一條直線上.
證明:分別延長AD、BC交于點(diǎn)K,
![]()
由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,
再由切線長定理得:AC+CE=AF,BE=BF,
∴KE=AF.∴
,
由梅涅勞斯定理的逆定理可證,D、E、F三點(diǎn)共線,
即D、E、F三點(diǎn)共線.
(2)∵AB=AC=5,BC=6,
∴A、E、I三點(diǎn)共線,CE=BE=3,AE=4,
連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點(diǎn)共圓.
設(shè)⊙I的半徑為r,則:
,
∴
,即
,
,
∴由△AEF∽△DEI得:
,
∴
.
∴
,
因此,由韋達(dá)定理可知:分別以
、
為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程是6x2﹣13x+6=0.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作ME⊥CD于點(diǎn)E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時(shí)距離乙地ykm,已知小紅駕車中途休息了1小時(shí),圖中的折線表示她在整個(gè)駕車過程中y與x之間的函數(shù)關(guān)系.
(1)B點(diǎn)的坐標(biāo)為( , );
(2)求線段AB所表示的y與x之間的函數(shù)表達(dá)式;
(3)小紅休息結(jié)束后,以60km/h的速度行駛,則點(diǎn)D表示的實(shí)際意義是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知
中,
,
,過頂點(diǎn)
作射線
.
(1)當(dāng)射線
在
外部時(shí),如圖①,點(diǎn)
在射線
上,連結(jié)
、
,已知
,
,
(
).
![]()
①試證明
是直角三角形;
②求線段
的長.(用含
的代數(shù)式表示)
(2)當(dāng)射線
在
內(nèi)部時(shí),如圖②,過點(diǎn)
作
于點(diǎn)
,連結(jié)
,請(qǐng)寫出線段
、
、
的數(shù)量關(guān)系,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
![]()
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直路上行駛過程中汽車離出發(fā)地的距離S(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,下列說法正確的是( 。
![]()
A.汽車共行駛了120千米
B.汽車在行駛途中停留了2小時(shí)
C.汽車在AB段的行駛速度與CD段的行駛速度相同
D.汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的平均速度為80千米/時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交AB的延長線于G.
(1)求證:AEFD=AFEC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)騎自行車去郊游,右圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象,小強(qiáng)9點(diǎn)離開家,15點(diǎn)回家,根據(jù)這個(gè)圖象,請(qǐng)你回答下列問題:
![]()
(1)小強(qiáng)到離家最遠(yuǎn)的地方需要幾小時(shí)?此時(shí)離家多遠(yuǎn)?
(2)何時(shí)開始第一次休息?休息時(shí)間多長?
(3)小強(qiáng)何時(shí)距家21km?(寫出計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,
),點(diǎn)M是拋物線C2:
(
<0)的頂點(diǎn).
![]()
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com