如圖,在平面直角坐標(biāo)系中,直線
與
拋物線
交于A,B兩點,點A在x軸上,點B的橫坐標(biāo)為-8.
(1)求拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點(不與點A,B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值.
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負(fù)半軸上,且OD=10,
OB=8.將矩形的邊BC繞點B逆時針旋轉(zhuǎn),使點C恰好與x軸上的點A重合.
(1)若拋物線
經(jīng)過A、B兩點,求該拋物線的解析式:______________;
(2)若點M是直線AB上方拋物線上的一個動點,
作MN⊥x軸于點N.是否存在點M,使△AMN
與△ACD相似?若存在,求出點M的坐標(biāo);
若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線
的對稱軸為直線
,且與x軸交于A、B兩點,與y軸交于點C,其中A(1,0),C(0,-3).
(1)求拋物線的解析式;
(2)若點P在拋物線上運(yùn)動(點P異于點A),
①如圖1,當(dāng)△PBC的面積與△ABC的面積相等時,求點P的坐標(biāo);
②如圖2,當(dāng)∠PCB =∠BCA時,求直線CP的解析式.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,有6張寫有實數(shù)的卡片,它們的背面都相同,現(xiàn)將它們背面朝上洗勻后如圖②擺放,從中任意翻開兩張都是無理數(shù)的概率是( )
(A)
(B)
(C)
(D)![]()
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
從邊長相等的正三角形、正四邊形、正五邊形、正六邊形、正八邊形中任選兩種不同的 正多邊形,能夠進(jìn)行平面鑲嵌的概率是 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xoy中,拋物線
與x軸,y軸的交點分別為點A,點B,過點B作x軸的平行線BC,交拋物線于點C,連結(jié)AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運(yùn)動時,點Q也同時停止運(yùn)動,線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)0<t<
時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com