| A. | 3個(gè) | B. | 4個(gè) | C. | 1個(gè) | D. | 2個(gè) |
分析 ①由DE⊥AC,BF⊥AC,可得DE∥BF,又由四邊形ABCD是平行四邊形,利用△ACD與△ACB的面積相等,即可判定DE=BF,然后由一組對(duì)邊平行且相等的四邊形是平行四邊形,證得四邊形BFDE是平行四邊形;
②由四邊形ABCD是平行四邊形,DE平分∠ADC,BF平分∠ABC,易證得△ADE≌△CBF,則可判定DE∥BF,DE=BF,繼而證得四邊形BFDE是平行四邊形;
③由四邊形ABCD是平行四邊形,E是AB的中點(diǎn),F(xiàn)是CD的中點(diǎn),易證得DF∥BE,DF=BE,繼而證得四邊形BFDE是平行四邊形;
④無(wú)法確定DF=BE,只能證得DF∥BE,故不能判定四邊形BFDE是平行四邊形.
解答 解:①∵四邊形ABCD是平行四邊形,
∴S△ACD=S△ABC,
∵DE⊥AC,BF⊥AC,
∴DE∥BF,S△ACD=$\frac{1}{2}$AC•DE,S△ABC=$\frac{1}{2}$AC•BF,
∴DE=BF,
∴四邊形BFDE是平行四邊形;
②∵四邊形ABCD是平行四邊形,
∴∠ADC=∠ABC,AD=CB,AD∥BC,
∴∠DAE=∠BCF,
∵DE平分∠ADC,BF平分∠ABC,
∴∠ADE=∠CBF,
在△ADE和△CBF中,
$\left\{\begin{array}{l}{∠ADE=∠CBF}\\{AD=CB}\\{∠DAE=∠BCF}\end{array}\right.$,
∴△ADE≌△CBF(ASA),
∴DE=BF,∠AED=∠BFC,
∴∠DEF=∠BFE,
∴DE∥BF,
∴四邊形BFDE是平行四邊形;
③證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵E是AB的中點(diǎn),F(xiàn)是CD的中點(diǎn),
∴DF=$\frac{1}{2}$CD,BE=$\frac{1}{2}$AB,
∴DF=BE,
∴四邊形BFDE是平行四邊形;
④∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵E是AB上一點(diǎn),EF⊥AB,
無(wú)法判定DF=BE,
∴四邊形BFDE不一定是平行四邊形.
故選A.
點(diǎn)評(píng) 本題考查了平行四邊形的判定以及全等三角形的判定與性質(zhì).注意掌握一組對(duì)邊平行且相等的四邊形是平行四邊形定理的應(yīng)用是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
| 拋擲總次數(shù) | 100 | 150 | 200 | 300 |
| 杯口朝上的頻數(shù) | 21 | 32 | 44 | 66 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com