如圖,四邊形ABCD是菱形,點G是BC延長線上一點,連接AG,分別交BD、CD于點E、F,連接CE.
![]()
(1)求證:∠DAE=∠DCE;
(2)當AE=2EF時,判斷FG與EF有何等量關系?并證明你的結(jié)論?
(1)證明略
(2)FG=3EF
【解析】(1)證明:∵四邊形ABCD是菱形
∴∠ADE=∠CDE,AD=CD
∵DE是公共邊
∴△ADE≌△CDE(SAS)
∴∠DAE=∠DCE
(2)FG=3EF
解法一:∵四邊形ABCD是菱形
∴AD∥BC,∠DAE=∠G
∵∠DAE=∠DCE
∴∠DCE=∠G
∵∠CEF=∠GEC
∴△ECF∽△EGC
∴![]()
∵△ADE≌△CDE
∴EA=EC
∴![]()
∵AE=2EF
∴EG=2EC=4EF
∴FG=3EF
解法二:∵四邊形ABCD是菱形
∴AB∥CD
∴△ABE∽△FDE
∴![]()
同理△BEG∽△DEA
∴![]()
∴EG=2AE=4EF
∴FG=3EF
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com