已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點(diǎn),以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).
(1)當(dāng)正方形的頂點(diǎn)F恰好落在對(duì)角線AC上時(shí),求BE的長(zhǎng);
(2)將(1)問(wèn)中的正方形BEFG沿BC向右平移,記平移中的正方形BEFC為正方形B′EFG,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點(diǎn)M,連接B′D,B′M,DM,是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)問(wèn)的平移過(guò)程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.
![]()
解:(1)如圖①,
![]()
設(shè)正方形BEFG的邊長(zhǎng)為x,
則BE=FG=BG=x,
∵AB=3,BC=6,
∴AG=AB﹣BG=3﹣x,
∵GF∥BE,
∴△AGF∽△ABC,
∴
,
即
,
解得:x=2,
即BE=2;
(2)存在滿足條件的t,
理由:如圖②,過(guò)點(diǎn)D作DH⊥BC于H,
![]()
則BH=AD=2,DH=AB=3,
由題意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,
在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣
t)2=
t2﹣2t+8,
∵EF∥AB,
∴△MEC∽△ABC,
∴
,即
,
∴ME=2﹣
t,
在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,
過(guò)點(diǎn)M作MN⊥DH于N,
則MN=HE=t,NH=ME=2﹣
t,
∴DN=DH﹣NH=3﹣(2﹣
t)=
t+1,
在Rt△DMN中,DM2=DN2+MN2=
t2+t+1,
(Ⅰ)若∠DB′M=90°,則DM2=B′M2+B′D2,
即
t2+t+1=(
t2﹣2t+8)+(t2﹣4t+13),
解得:t=
,
(Ⅱ)若∠B′MD=90°,則B′D2=B′M2+DM2,
即t2﹣4t+13=(
t2﹣2t+8)+(
t2+t+1),
解得:t1=﹣3+
,t2=﹣3﹣
(舍去),
∴t=﹣3+
;
(Ⅲ)若∠B′DM=90°,則B′M2=B′D2+DM2,
即:
t2﹣2t+8=(t2﹣4t+13)+(
t2+t+1),
此方程無(wú)解,
綜上所述,當(dāng)t=
或﹣3+
時(shí),△B′DM是直角三角形;
(3)①如圖③,當(dāng)F在CD上時(shí),EF:DH=CE:CH,
![]()
即2:3=CE:4,
∴CE=
,
∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣
=
,
∵M(jìn)E=2﹣
t,
∴FM=
t,
當(dāng)0≤t≤
時(shí),S=S△FMN=
×t×
t=
t2,
②當(dāng)G在AC上時(shí),t=2,
![]()
∵EK=EC•tan∠DCB=EC•
=
(4﹣t)=3﹣
t,
∴FK=2﹣EK=
t﹣1,
∵NL=
AD=
,
∴FL=t﹣
,
∴當(dāng)
<t≤2時(shí),S=S△FMN﹣S△FKL=
t2﹣
(t﹣
)(
t﹣1)=﹣
t2+t﹣
;
③如圖⑤,當(dāng)G在CD上時(shí),B′C:CH=B′G:DH,
![]()
即B′C:4=2:3,
解得:B′C=
,
∴EC=4﹣t=B′C﹣2=
,
∴t=
,
∵B′N=
B′C=
(6﹣t)=3﹣
t,
∵GN=GB′﹣B′N=
t﹣1,
∴當(dāng)2<t≤
時(shí),S=S梯形GNMF﹣S△FKL=
×2×(
t﹣1+
t)﹣
(t﹣
)(
t﹣1)=﹣
t2+2t﹣
,
④如圖⑥,當(dāng)
<t≤4時(shí),
![]()
∵B′L=
B′C=
(6﹣t),EK=
EC=
(4﹣t),B′N=
B′C=
(6﹣t)EM=
EC=
(4﹣t),
S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣
t+
.
綜上所述:
當(dāng)0≤t≤
時(shí),S=
t2,
當(dāng)
<t≤2時(shí),S=﹣
t2+t﹣
;
當(dāng)2<t≤
時(shí),S=﹣
t2+2t﹣
,
當(dāng)
<t≤4時(shí),S=﹣
t+
.
【解析】(1)首先設(shè)正方形BEFG的邊長(zhǎng)為x,易得△AGF∽△ABC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得BE的長(zhǎng);
(2)首先利用△MEC∽△ABC與勾股定理,求得B′M,DM與B′D的平方,然后分別從若∠DB′M=90°,則DM2=B′M2+B′D2,若∠DB′M=90°,則DM2=B′M2+B′D2,若∠B′DM=90°,則B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;
(3)分別從當(dāng)0≤t≤
時(shí),當(dāng)
<t≤2時(shí),當(dāng)2<t≤
時(shí),當(dāng)
<t≤4時(shí)去分析求解即可求得答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期相交線與平行線專項(xiàng)訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)
單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)
沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止
運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).
![]()
(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.
求出此時(shí)△APQ的面積.
(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯
形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期平移專項(xiàng)訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)
單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)
沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止
運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).
![]()
(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.
求出此時(shí)△APQ的面積.
(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯
形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com