B
分析:先延長BC交x軸于點F,連接OB,AF,DF,CE,DF和CE相交于點N,由所給點的坐標得出四邊形OABC,四邊形CDEF都為矩形,并且點M(2,3)是矩形OABF對角線的交點,點N是矩形CDEF的中心,得出直線l必過M和N點,再設直線l的解析式為y=kx+b,利用待定系數(shù)法即可求出直線l的函數(shù)表達式,然后把所給的點分別代入,即可求出答案.
解答:

解:如圖,延長BC交x軸于點F,連接OB,AF,DF,CE,DF和CE相交于點N,
∵O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0),
∴四邊形OABF為矩形,四邊形CDEF為矩形,
∴點M(2,3)是矩形OABF對角線的交點,
∴點M為矩形ABFO的中心,
∴直線l把矩形ABFO分成面積相等的兩部分,
同理可證:點N是矩形CDEF的中心,
∴點N(5,2),
∴過點N(5,2)的直線把矩形CDEF分成面積相等的兩部分,
∴直線MN就是所求的直線l,
設直線l的解析式為y=kx+b,
把M(2,3)N(5,2)代入上式得:

,
解得:

,
∴所求直線l的函數(shù)表達式是:y=-

x+

,
當x=4時,y=

,則A不正確;
當x=5時,y=2,則B正確;
當x=6時,y=

,則C不正確;
當x=0時,y=

,則D不正確;
故選B.
點評:本題考查了一次函數(shù)的綜合,用到的知識點是矩形的性質(zhì)即過矩形對角線交點的直線平分矩形的面積和待定系數(shù)法求解析式,解題的關(guān)鍵是根據(jù)圖形作出輔助線,求出四邊形OABC和四邊形CDEF都是矩形.