如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過(guò)O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
![]()
(1)求證:OF?DE=2OE?OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號(hào))
(1)由BD是直徑,根據(jù)圓周角定理,可得∠DAB=90°,又由FG⊥AB,可得FG∥AD,即可判定△FOE∽△ADE,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得
,然后由O是BD的中點(diǎn),DA∥OH,可得AD=2OH,則可證得OF?DE=OE?2OH;(2)![]()
【解析】
試題分析:(1)由BD是直徑,根據(jù)圓周角定理,可得∠DAB=90°,又由FG⊥AB,可得FG∥AD,即可判定△FOE∽△ADE,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得
,然后由O是BD的中點(diǎn),DA∥OH,可得AD=2OH,則可證得OF?DE=OE?2OH;
(2)由⊙O的半徑為12,且OE:OF:OD=2:3:6,即可求得OE,DE,OF的長(zhǎng),由
,求得AD的長(zhǎng),又由在Rt△ABC中,OB=2OH,可求得∠BOH=60°,繼而可求得BH的長(zhǎng),又由S陰影=S扇形GOB-S△OHB,即可求得答案.
(1)∵BD是直徑,
∴∠DAB=90°.
∵FG⊥AB,
∴DA∥FO.
∴△FOE∽△ADE.
∴
,即OF?DE=OE?AD
∵O是BD的中點(diǎn),DA∥OH,
∴AD=2OH
∴OF?DE=OE?2OH;
(2)∵⊙O的半徑為12,且OE:OF:OD=2:3:6,
∴OE=4,ED=8,OF=6
代入(1)中OF?DE=OE?AD,得AD=12.
∴OH=
AD=6.
在Rt△OHB中,OB=2OH,
∴∠OBH=30°,
∴∠BOH=60°.
∴BH=BO?sin60°=![]()
![]()
考點(diǎn):相似三角形的判定與性質(zhì),圓周角定理,平行線等分線段定理,銳角三角函數(shù)的定義
點(diǎn)評(píng):此題綜合性較強(qiáng),難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,證得△FOE∽△ADE是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com