| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得FA=FC,根據(jù)等邊三角形的性質(zhì)可得EA=EC,根據(jù)線段垂直平分線的判定可得EF是線段AC的垂直平分線;根據(jù)條件及等邊三角形的性質(zhì)可得∠DFA=∠EAF=90°,DA⊥AC,從而得到DF∥AE,DA∥EF,可得到四邊形ADFE為平行四邊形而不是菱形;根據(jù)平行四邊形的對角線互相平分可得AD=AB=2AF=4AG;易證DB=DA=EF,∠DBF=∠EFA=60°,BF=FA,即可得到△DBF≌△EFA.
解答 解:
連接FC,如圖所示:
∵∠ACB=90°,F(xiàn)為AB的中點,
∴FA=FB=FC,
∵△ACE是等邊三角形,
∴EA=EC,
∵FA=FC,EA=EC,
∴點F、點E都在線段AC的垂直平分線上,
∴EF垂直平分AC,即EF⊥AC;
∵△ABD和△ACE都是等邊三角形,F(xiàn)為AB的中點,
∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.
∵∠BAC=30°,
∴∠DAC=∠EAF=90°,
∴∠DFA=∠EAF=90°,DA⊥AC,
∴DF∥AE,DA∥EF,
∴四邊形ADFE為平行四邊形而不是菱形;
∵四邊形ADFE為平行四邊形,
∴DA=EF,AF=2AG,
∴BD=DA=EF,DA=AB=2AF=4AG;
在△DBF和△EFA中,
$\left\{\begin{array}{l}{BD=FE}\\{∠DBF=∠EFA}\\{BF=FA}\end{array}\right.$,
∴△DBF≌△EFA;
綜上所述:①③④正確,
故選C.
點評 本題主要考查了直角三角形斜邊上的中線等于斜邊的一半、等邊三角形的性質(zhì)、線段垂直平分線的判定、平行四邊形判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性比較強(qiáng),有一定難度.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com