欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
(2005•青島)如圖,在等腰梯形ABCD中,AD∥BC,M、N分別為AD、BC的中點,E、F分別是BM、CM的中點.
(1)求證:△ABM≌△CDM;
(2)四邊形MENF是什么圖形?請證明你的結論;
(3)若四邊形MENF是正方形,則梯形的高與底邊BC有何數量關系?并請說明理由.

【答案】分析:(1)已知四邊形ABCD為等腰梯形,推出AB=CD,∠A=∠D,AM=DM故可證明三角形全等.
(2)由1證明三角形全等得出各邊之間的關系推出四邊形MENF是菱形.
(3)由梯形的性質可推出四邊形MENF是正方形推出MN⊥BC且MN=BC.
解答:證明:(1)∵ABCD為等腰梯形,
∴AB=DC,∠A=∠D.
∵M是AD中點,
∴AM=DM.
∴△ABM≌△DCM.

(2)四邊形MENF是菱形(若考生回答是平行四邊形且給出證明,則此問題只能得2分)
由△ABM≌△DCM,得MB=MC,
∵E、F、N是MB、MC、BC的中點,
∴ME=BM,MF=MC,NF=BM,NE=MC.
∴ME=MF=FN=NE.
∴四邊形MENF是菱形.

(3)梯形的高等于底邊BC的一半連接MN,
∵MENF是正方形,
∴∠BMC=90°.
∵MB=MC,N是中點,
∴MN⊥BC且MN=BC.
點評:本題主要考查等腰梯形的性質的應用,全等三角形的判定以及菱形的判定定理.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年四川省新課標中考數學模擬試卷(3)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年山東省青島市中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案