已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在如圖(1)中的位置時(shí),則有結(jié)論:S△PBC=S△PAC+S△PCD.理由:過點(diǎn)P作EF垂直BC,分別交AD、BC于E、F兩點(diǎn).
∵S△PBC+S△PAD=
BC·PF+
AD·PE=
BC(PF+PE)=
BC·EF=
S矩形ABCD,又∵S△PAC+S△PCD+S△PAD=
S矩形ABCD,
∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD.∴S△PBC=S△PAC+S△PCD.
請(qǐng)你參考上述信息,當(dāng)點(diǎn)P分別在圖(2)(3)中的位置時(shí),S△PBC、S△PAC、S△PCD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你對(duì)上述兩種情況的猜想,并選擇其中一種情況的猜想給予證明.
|
[探究過程]仔細(xì)閱讀圖(1)的證明過程,弄清問題的實(shí)質(zhì)、解題的策略,再猜想驗(yàn)證圖(2)、(3)的變化規(guī)律.易發(fā)現(xiàn)本題猜想結(jié)果:圖(2)結(jié)論S△PBC=S△PAC+S△PCD;圖(3)結(jié)論S△PBC=S△PAC-S△PCD. [探究評(píng)析]在運(yùn)動(dòng)變化的題型中,要掌握好“變”與“不變”,觀察動(dòng)態(tài)變化過程中不變的量,學(xué)會(huì)從不同的情境中找出完全相同(或類似)的解法、思路,在新的情境中提出新猜想去解決新的問題. |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在圖1中的位置時(shí),則有結(jié)論:S△PBC=S△PAC+
S△PCD 理由:過點(diǎn)P作EF垂直BC,分別交AD、BC于E、F兩點(diǎn).
∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD
又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD
∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD.
∴ S△PBC=S△PAC+S△PCD.
請(qǐng)你參考上述信息,當(dāng)點(diǎn)P分別在圖2、圖3中的位置時(shí),S△PBC、S△PAC、S△PCD又
有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你對(duì)上述兩種情況的猜想,并選擇其中一種情況的猜想給
予證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧大石橋市九年級(jí)中考模擬(四)數(shù)學(xué)試卷(解析版) 題型:解答題
已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在圖1中的位置時(shí),則有結(jié)論:S△PBC=S△PAC+
S△PCD 理由:過點(diǎn)P作EF垂直BC,分別交AD、BC于E、F兩點(diǎn).
∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD
又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD
∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD.
∴ S△PBC=S△PAC+S△PCD.
請(qǐng)你參考上述信息,當(dāng)點(diǎn)P分別在圖2、圖3中的位置時(shí),S△PBC、S△PAC、S△PCD又
有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你對(duì)上述兩種情況的猜想,并選擇其中一種情況的猜想給
予證明.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com