分析 根據(jù)三角函數(shù)的定義結(jié)合已知條件可以求出AC、CD,利用∠BCD=∠A求∠BCD的余弦值.
解答
解:∵CD⊥AB,
∴∠ADC=90°,
∵sin∠ACD=$\frac{AD}{AC}$=$\frac{4}{5}$,AD=4,
∴AC=5,
∴CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵∠ACB=90°,
∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠A,
∴cos∠BCD=cos∠A=$\frac{AD}{AC}$=$\frac{4}{5}$.
點評 本題考查直角三角形的性質(zhì)、三角函數(shù)的定義、勾股定理、同角的余角相等等知識,熟記性質(zhì)是解題的關(guān)鍵,作出圖形更形象直觀.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{3}a}{3}$ | B. | $\frac{\sqrt{2}a}{2}$ | C. | $\frac{a}{2}$ | D. | $\frac{a}{3}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com