【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個命題:
①當(dāng)x>0時,y>0;
②若a=﹣1,則b=3;
③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;
④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為6
.
其中真命題的序號是____________.
![]()
【答案】②③.
【解析】
(1)根據(jù)二次函數(shù)所過象限,判斷出y的符號;
(2)根據(jù)A、B關(guān)于對稱軸對稱,求出b的值;
(3)根據(jù)
,由x1<1<x2,從而得到Q點(diǎn)距離對稱軸較遠(yuǎn),由圖象性質(zhì)判斷出y1>y2;
(4)作D關(guān)于y軸的對稱點(diǎn)
,E關(guān)于x軸的對稱點(diǎn)
,連接![]()
,DE和![]()
的和即為四邊形EDFG周長的最小值,求出D、E、
、
的坐標(biāo)即可解答.
(1)當(dāng)x>0時,函數(shù)圖象過一、四象限,當(dāng)0<x<b時,y>0;當(dāng)x>b時,y<0,故本選項(xiàng)錯誤;
(2)二次函數(shù)對稱軸為x=-
=1,點(diǎn)A、B關(guān)于x=1對稱,當(dāng)a=-1時,有
=1,解得b=3,故本選項(xiàng)正確;
(3)∴x1+x2>2,
∴
,
又∵x1<1<x2,
∴Q點(diǎn)距離對稱軸較遠(yuǎn),
∵函數(shù)圖象開口向下,
∴y1>y2,故本選項(xiàng)正確;
(4)如圖,作D關(guān)于x軸的對稱點(diǎn)
,E關(guān)于x軸的對稱點(diǎn)
,連接![]()
,![]()
的和即為四邊形EDFG周長的最小值,
當(dāng)m=2時,二次函數(shù)為y=﹣x2+2x+3,頂點(diǎn)縱坐標(biāo)為y=-1+2+3=4,D為(1,4),則
為(-1,4),C點(diǎn)坐標(biāo)為(0,3),則E為(2,3),
為(2,-3)則DE=
,![]()
=
,
∴四邊形EDFG周長的最小值為
,
∴四邊形EDFG周長的最小值為
,故本選項(xiàng)錯誤,
故答案為:②③.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計(jì)劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計(jì)劃的有效實(shí)施,學(xué)校隨機(jī)對部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
學(xué)生選修課程統(tǒng)計(jì)表
課程 | 人數(shù) | 所占百分比 |
聲樂 | 14 |
|
舞蹈 | 8 |
|
書法 | 16 |
|
攝影 |
|
|
合計(jì) |
|
|
![]()
根據(jù)以上信息,解答下列問題:
(1)
,
.
(2)求出
的值并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該校有1500名學(xué)生,請你估計(jì)選修“聲樂”課程的學(xué)生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準(zhǔn)備從這4人中隨機(jī)抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=
,D是CB延長線上一點(diǎn),以BD為邊向上作等邊三角形EBD,連接AD,若AD=11,且∠ABE=2∠ADE,則tan∠ADE的值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
內(nèi)接于
,對角線
為
的直徑,過點(diǎn)
作AC的垂線交AD的延長線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
![]()
(1)求證:DF是
的切線;
(2)若
,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)
的圖像經(jīng)過點(diǎn)
,點(diǎn)
,連接
,
,若
.
![]()
(1)求反比例函數(shù)的解析式;
(2)過點(diǎn)
作
軸,交反比例函數(shù)
的圖像于點(diǎn)
,連接
,
與
交于點(diǎn)
,求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠ABO=30°,BO=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,D點(diǎn)為x軸正半軸上的一點(diǎn),以OD為一邊在第一象限內(nèi)作等邊△ODE.
(1)如圖①當(dāng)E點(diǎn)恰好落在線段AB上時,求E點(diǎn)坐標(biāo);
(2)若點(diǎn)D從原點(diǎn)出發(fā)沿x軸正方向移動,設(shè)點(diǎn)D到原點(diǎn)的距離為x,△ODE與△AOB重疊部分的面積為y,當(dāng)E點(diǎn)到達(dá)△AOB的外面,且點(diǎn)D在點(diǎn)B左側(cè)時,寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(1)問的條件下,將△ODE在線段OB上向右平移如圖②,圖中是否存在一條與線段OO′始終相等的線段?如果存在,請直接指出這條線段;如果不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=
的圖象相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣1,4),點(diǎn)B的坐標(biāo)為(4,n).
(1)求這兩個函數(shù)的表達(dá)式;
(2)根據(jù)圖象,直接寫出滿足k1x+b>
的x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國古代數(shù)學(xué)形成了完整的體系.其中有一個問題:“今有二馬、一牛價(jià)過-萬,如半馬之價(jià):一馬、二牛價(jià)不滿一萬,如半牛之價(jià).問牛、馬價(jià)各幾何?”其大意為:現(xiàn)有兩匹馬加一頭牛的價(jià)錢超過一萬,超過的部分正好是半匹馬的價(jià)錢:一匹馬加上兩頭牛的價(jià)錢則不到一萬,不足的部分正好是半頭牛的價(jià)錢.問一頭牛、一匹馬各多少錢?設(shè)一匹馬值
錢、一頭牛值
錢,則符合題意的方程組為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
,直線
與y軸交于點(diǎn)A,與雙曲線
交于點(diǎn)
.
![]()
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若
的面積為6,求直線CD的表達(dá)式.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com