【題目】在一條筆直的公路上有A、B兩地.甲、乙兩人同時(shí)出發(fā),甲騎電動(dòng)車(chē)從A地勻速前往B地,行走到一半路程時(shí)出現(xiàn)故障后停車(chē)維修,修好車(chē)后以原速繼續(xù)行駛到B地;乙騎摩托車(chē)從B地勻速前往A地,到達(dá)A地后立即按原路原速返回,結(jié)果兩人同時(shí)到B地.甲、乙兩人與B地的距離y(km)與乙行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)求甲修車(chē)前的速度.
(2)求甲、乙第一次相遇的時(shí)間.
(3)若兩人之間的距離不超過(guò)10km時(shí),能夠用無(wú)線(xiàn)對(duì)講機(jī)保持聯(lián)系,請(qǐng)直接寫(xiě)出乙在行進(jìn)中能用無(wú)線(xiàn)對(duì)講機(jī)與甲保持聯(lián)系的x取值范圍.
![]()
【答案】(1)甲修車(chē)前的速度為20km/h;(2)甲、乙第一次相遇是在出發(fā)后0.6小時(shí);(3)
,
.
【解析】
(1)由函數(shù)圖象可以求出甲行駛的時(shí)間,就可以由路程÷時(shí)間求出甲行駛的速度;
(2)由相遇問(wèn)題的數(shù)量關(guān)系直接求出結(jié)論;
(3)設(shè)甲在修車(chē)前y與x之間的函數(shù)關(guān)系式為y甲1=kx+b,甲在修車(chē)后y與x之間的函數(shù)關(guān)系式為y甲2=k3x+b3,乙前往A地的距離y(km)與乙行駛時(shí)間x(h)之間的關(guān)系式為y乙1=k1x,設(shè)乙返回B地距離B地的距離y(km)與乙行駛時(shí)間x(h)之間的關(guān)系式為y乙2=k2x+b2,由待定系數(shù)法求出解析式建立不等式組求出其解即可.
(1)由題意,得
30÷(2-
)=20(km/h).
∴甲修車(chē)前的速度為20km/h;
(2)由函數(shù)圖象,得
(30+20)x=30,
解得x=0.6.
∴甲、乙第一次相遇是在出發(fā)后0.6小時(shí);
(3)設(shè)甲在修車(chē)前y與x之間的函數(shù)關(guān)系式為y甲1=kx+b,由題意,得
,
解得:
,
y甲1=﹣20x+30,
設(shè)甲在修車(chē)后y與x之間的函數(shù)關(guān)系式為y甲2=k3x+b3,由題意,得
,
解得:
,
∴y甲2=﹣20x+40,
設(shè)乙前往A地的距離y(km)與乙行駛時(shí)間x(h)之間的關(guān)系式為y乙1=k1x,由題意,得
30=k1,
∴y乙1=30x;
設(shè)乙返回B地距離B地的距離y(km)與乙行駛時(shí)間x(h)之間的關(guān)系式為y乙2=k2x+b2,由題意,得
,
解得:
,
∴y=﹣30x+60.
當(dāng)
時(shí),
∴
;
,
解得:
.
∴
,
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在研究數(shù)學(xué)問(wèn)題時(shí)遇到一個(gè)定義:將三個(gè)已經(jīng)排好順序的數(shù):
,
,
,稱(chēng)為數(shù)列
,
,
.計(jì)算
,
,
,將這三個(gè)數(shù)的最小值稱(chēng)為數(shù)列
,
,
的最佳值.例如,對(duì)于數(shù)列2,
,3,因?yàn)?/span>
,
,
,所以數(shù)列2,
,3的最佳值為
.
小明進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個(gè)數(shù)的順序時(shí),所得到的數(shù)列都可以按照上述方法計(jì)算其相應(yīng)的最佳值.如數(shù)列
,2,3的最佳值為
;數(shù)列3,
,2的最佳值為1;
.經(jīng)過(guò)研究,小明發(fā)現(xiàn),對(duì)于“2,
,3”這三個(gè)數(shù),按照不同的排列順序得到的不同數(shù)列中,最佳值的最小值為
.根據(jù)以上材料,回答下列問(wèn)題:
(1)求數(shù)列
,
,2的最佳值;
(2)將“
,
,1”這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)數(shù)列,這些數(shù)列的最佳值的最小值為 ,取得最佳值最小值的數(shù)列為 (寫(xiě)出一個(gè)即可);
(3)將3,
,
這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)數(shù)列.若使數(shù)列的最佳值為1,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過(guò)點(diǎn)P作PE⊥AB,垂足為E,射線(xiàn)EP交弧AC于點(diǎn)F,交過(guò)點(diǎn)C的切線(xiàn)于點(diǎn)D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是弧AC的中點(diǎn)時(shí),判斷以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=4,將△ABC△繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到△ADE,連結(jié)BE,則BE的長(zhǎng)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)庫(kù)存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校.現(xiàn)有甲、乙兩個(gè)木工組,甲組每天修理桌椅16套,乙組每天修理桌椅比甲組多8套.甲組單獨(dú)修理完這些桌椅比乙組單獨(dú)修理完多用20天.學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi).
(1)該中學(xué)庫(kù)存多少套桌椅?
(2)在修理過(guò)程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天20元生活補(bǔ)助費(fèi).現(xiàn)有三種修理方案:
方案一,由甲組單獨(dú)修理;
方案二,由乙組單獨(dú)修理;
方案三,甲、乙兩組同時(shí)修理.
你認(rèn)為哪種方案省時(shí)又省錢(qián)?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D是半圓O的三等分點(diǎn),過(guò)點(diǎn)C作⊙O的切線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,交⊙O于點(diǎn)H,連接DC,AC.
(1)求證:∠AEC=90°;
(2)試判斷以點(diǎn)A,O,C,D為頂點(diǎn)的四邊形的形狀,并說(shuō)明理由;
(3)若DC=2,求DH的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=
(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,根據(jù)材料回答:
例如1:![]()
![]()
![]()
![]()
.
例如2:
8
×0.125
=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6 =1.
(1)仿照上面材料的計(jì)算方法計(jì)算:
;
(2)由上面的計(jì)算可總結(jié)出一個(gè)規(guī)律:(用字母表示)
;
(3)用(2)的規(guī)律計(jì)算:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關(guān)系,如圖所示.
(1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式;
(2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com