【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
![]()
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈
,cos37°≈
,tan37°≈
,sin48°≈
,cos48°≈
,tan48°≈
)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于
的一元二次方程
有下列說(shuō)法:①若
,則
;②若方程兩根為-1和2,則
;③若方程
有兩個(gè)不相等的實(shí)根,則方程
必有兩個(gè)不相等的實(shí)根;④若
,則方程有兩個(gè)不相等的實(shí)根,其中結(jié)論正確的是有( )個(gè)。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形△ABC,點(diǎn) D,E 分別在 CA,CB 的延長(zhǎng)線上,且 BE=CD,O為 BC 的中點(diǎn),MO⊥AB 交 DE 于點(diǎn) M,OM=
,AD=2,則 AB=________________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的序號(hào)__________
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠EFC′=120°,那么∠ABE的度數(shù)為__________。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=4,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )
![]()
A. (2
,﹣2
)B. (
,-
)C. (2,﹣2)D. (
,-
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
,點(diǎn)
為線段
的中點(diǎn),
的平分線
與
軸相較于點(diǎn)
,
、
兩點(diǎn)關(guān)于
軸對(duì)稱.
![]()
(1)一動(dòng)點(diǎn)
從點(diǎn)
出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到直線
上的點(diǎn)
,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)
處.當(dāng)
的運(yùn)動(dòng)路徑最短時(shí),求此時(shí)點(diǎn)
的坐標(biāo)及點(diǎn)
所走最短路徑的長(zhǎng).
(2)點(diǎn)
沿直線
水平向右運(yùn)動(dòng)得點(diǎn)
,平面內(nèi)是否存在點(diǎn)
使得以
、
、
、
為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣2x+6與x軸,y軸分別交A,B兩點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)是點(diǎn)C,動(dòng)點(diǎn)E從A出發(fā)以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)C,點(diǎn)D在線段OB上滿足tan∠DEO=2,過(guò)E點(diǎn)作EF⊥AB于點(diǎn)F,點(diǎn)A關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為點(diǎn)G,以DG為直徑作⊙M,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t秒;
(1)當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng),t= 時(shí),△AEF與△EDO的相似比為1:
;
(2)當(dāng)⊙M與y軸相切時(shí),求t的值;
(3)若直線EG與⊙M交于點(diǎn)N,是否存在t使NG=
,若存在,求出t的值;若不存在,說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長(zhǎng)線上的一點(diǎn),∠EAB=∠ADB;
(1)求證:AE是⊙O的切線;
(2)已知點(diǎn)B是EF的中點(diǎn),求證:△EAF∽△CBA
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長(zhǎng).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com