【題目】已知AB是⊙O的直徑,⊙O過BC的中點D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
![]()
【答案】(1)證明見解析;(2)證明見解析;(3)
.
【解析】試題分析:(1)連結(jié)AD,如圖,由圓周角定理得到∠ADB=90°,則AD⊥BC,加上BD=CD,即AD垂直平分BC,所以AB=AC;
(2)連結(jié)OD,如圖,先證明OD為△ABC的中位線,根據(jù)三角形中位線性質(zhì)得OD∥AC,而DE⊥AC,所以OD⊥DE,于是根據(jù)切線的判定定理可得DE是⊙O的切線;
(3)易得BD=DC=
BC=5,AC=AB=13,由勾股定理得到AD=12,再用面積法求出DE的長.
試題解析:解:(1)連結(jié)AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∴D為BC的中點,∴BD=CD,∴AB=AC;
![]()
(2)連結(jié)OD,如圖,∵OA=OB,DB=DC,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線;
(3)BD=DC=
BC=5,AC=AB=13,由勾股定理得:AD=12,在Rt△DAC中,
AD*DC=
AC*DE,∴DE=
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC邊的中點,點E,F分別在AC,AB上,且DE∥AB,EF∥BC.
(1)求證:CD=EF;
(2)已知∠ABC=60°,連接BE,若BE平分∠ABC,CD=6,求四邊形BDEF的周長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB與CD有怎樣的位置關(guān)系.
(2)如圖2已知AB∥EF,試猜想∠B,∠F,∠BCF之間的關(guān)系,寫出這種關(guān)系,并加以證明.
(3)如圖3已知AB∥CD,試猜想∠1,∠2,∠3,∠4,∠5之間的關(guān)系,請直接寫出這種關(guān)系,不用證明.
![]()
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可住;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進(jìn)行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,請分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號內(nèi)注明理由.
![]()
①∵ ∠B=∠3(已知),∴______∥______.(______,______)
②∵∠1=∠D (已知),∴______∥______.(______,______)
③∵∠2=∠A (已知),∴______∥______.(______,______)
④∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,
,
、
分別在
、
上,連接
、
交于點
,且
.
(1)如圖1,求證:
.
![]()
(2)如圖2,
是
的中點,試探討
與
的位置關(guān)系.
![]()
(3)如圖3,
、
分別是
、
的中點,若
,
,求
的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=
的圖象經(jīng)過點(﹣1,﹣2
),點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當(dāng)
時,則點C的坐標(biāo)為______.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com