如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現有如下結論:
①BE=
GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH
其中,正確的結論有( 。
![]()
A. 1個 B. 2個 C. 3個 D. 4個
B. 解:∵四邊形ABCD是正方形,
∴∠B=∠DCB=90°,AB=BC,
∵AG=CE,
∴BG=BE,
由勾股定理得:BE=
GE,∴①錯誤;
∵BG=BE,∠B=90°,
∴∠BGE=∠BEG=45°,
∴∠AGE=135°,
∴∠GAE+∠AEG=45°,
∵AE⊥EF,
∴∠AEF=90°,
∵∠BEG=45°,
∴∠AEG+∠FEC=45°,
∴∠GAE=∠FEC,
在△GAE和△CEF中
![]()
∴△GAE≌△CEF,∴②正確;
∴∠AGE=∠ECF=135°,
∴∠FCD=135°﹣90°=45°,∴③正確;
∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
∴∠FEC<45°,
∴△GBE和△ECH不相似,∴④錯誤;
即正確的有2個.
科目:初中數學 來源: 題型:
⊙O是△ABC的外接圓,AB是直徑,過
的中點P作⊙O的直徑PG交弦BC于點D,連接AG, CP,PB.
(1) 如題24﹣1圖;若D是線段OP的中點,求∠BAC的度數;
(2) 如題24﹣2圖,在DG上取一點k,使DK=DP,連接CK,求證:四邊形AGKC是平行四邊形;
(3) 如題24﹣3圖;取CP的中點E,連接ED并延長ED交AB于點H,連接PH,求證:PH⊥AB.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當點P到達點C時,點Q也停止運動.設點P,Q運動的時間為t秒.
(1)從運動開始,當t取何值時,PQ∥CD?
(2)從運動開始,當t取何值時,△PQC為直角三角形?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
下列說法不正確的是( 。
A.圓錐的俯視圖是圓
B.對角線互相垂直平分的四邊形是菱形
C.任意一個等腰三角形是鈍角三角形
D.周長相
等的正方形、長方形、圓,這三個幾何圖形中,圓面積最大
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com