(1)證明:在平行四邊形ABCD中,AB∥CD,
∴∠BAD+∠ADC=180°.
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE.
(2)解:在平行四邊形ABCD中,AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA.
又∵∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5.
同理EC=CD=5.
∴AD=BC=BE+EC=10.
在Rt△AED中,DE=

=

=6.
又∵AE是∠BAD的角平分線,
∴∠FAG=∠DAE.
∵AD是直徑,
∴∠AFD=90°,
∴tan∠FAG=

,
∴

=tan∠DAE=

=

=

.
分析:(1)由四邊形ABCD是?,可知AB∥CD,那么就有∠BAD+∠ADC=180°,又AE、DE是∠BAD、∠ADC的角平分線,容易得出∠DAE+∠ADE=90°,即AE⊥DE;
(2)由于AD∥BC,AE是角平分線,容易得∠BAE=∠BEA,那么AB=BE=CD=5,同理有CE=CD=5,容易得出AD=BC=BE+CE=10.
在Rt△ADE中,利用勾股定理可求DE,由于AD是直徑,所以tan∠FAG=

,而∠FAG=∠DAE,于是

=

,即可求.
點評:本題綜合考查了平行四邊形的性質、三角函數值、勾股定理等知識.