欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,橫截面為等腰梯形的無蓋水槽,其周長為40cm,底角∠ABC=∠DCB=60°.設AB為xcm,BC為ycm.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(2)當x為何值時,橫截面的面積最大?最大面積是多少?

解:(1)過點A作AE⊥BC于點E,

∵四邊形ABCD是等腰梯形,
∴AB=CD=x,
∵梯形的周長為40cm,
∴y+2x=40,
即可得:y=40-2x,
∵y>x,
∴x<,
故可得:y=40-2x(0<x<).

(2)∵AD=BC-2BE=y-x,
∴S梯形ABCD=(AD+BC)×AE=(2y-x)×x=-(x-8)2+80,
當x=8時,S取得最大,最大面積為80
分析:(1)過點A作AE⊥BC于點E,根據(jù)等腰梯形的性質(zhì)即可得出y與x的函數(shù)關(guān)系式;
(2)表示出橫截面積,運用配方法求最值即可.
點評:本題考查了等腰梯形的性質(zhì),解答本題的關(guān)鍵是作出輔助線,用x表示出各線段的長度,難度一般.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

現(xiàn)有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面精英家教網(wǎng)面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(27):6.4 二次函數(shù)的應用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習冊答案