如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線DC,P點為優(yōu)弧
上一動點(不與A.C重合).
(1)求∠APC與∠ACD的度數(shù);
(2)當點P移動到CB弧的中點時,求證:四邊形OBPC是菱形.
(3)P點移動到什么位置時,△APC與△ABC全等,請說明理由.
![]()
解:(1)連接AC,如圖所示:
![]()
∵AB=4,∴OA=OB=OC=
AB=2。
又∵AC=2,∴AC=OA=OC。∴△ACO為等邊三角形。
∴∠AOC=∠ACO=∠OAC=60°,
∴∠APC=
∠AOC=30°。
又DC與圓O相切于點C,∴OC⊥DC!唷螪CO=90°。
∴∠ACD=∠DCO﹣∠ACO=90°﹣60°=30°。
(2)連接PB,OP,
∵AB為直徑,∠AOC=60°,∴∠COB=120°。
當點P移動到弧CB的中點時,∠COP=∠POB=60°。
∴△COP和△BOP都為等邊三角形!郃C=CP=OA=OP。
∴四邊形AOPC為菱形。
(3)當點P與B重合時,△ABC與△APC重合,顯然△ABC≌△APC。
當點P繼續(xù)運動到CP經(jīng)過圓心時,△ABC≌△CPA,理由為:
∵CP與AB都為圓O的直徑,∴∠CAP=∠ACB=90°。
在Rt△ABC與Rt△CPA中,AB=CP,AC=AC
∴Rt△ABC≌Rt△CPA(HL)。
綜上所述,當點P與B重合時和點P運動到CP經(jīng)過圓心時,△ABC≌△CPA。
【解析】切線的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),圓周角定理,菱形的判定。
【分析】(1)連接AC,由直徑AB=4,得到半徑OA=OC=2,又AC=2,得到AC=OC=OA,即△AOC為等邊三角形,可得出三個內(nèi)角都為60°,再由同弧所對的圓心角等于所對圓周角的2倍,得到∠APC為30°,由CD為圓O的切線,得到OC垂直于CD,可得出∠OCD為直角,用∠OCD-∠OCA可得出∠ACD的度數(shù)。
(2)由∠AOC為60°,AB為圓O的直徑,得到∠BOC=120°,再由P為CB 的中點,得到兩條弧相等,根據(jù)等弧對等角,可得出∠COP=∠BOP=60°,從而得到△COP與△BOP都為等邊三角形,可得出OC=OB=PC=PB,即四邊形OBPC為菱形。
(3)點P有兩個位置使△APC與△ABC全等,其一:P與B重合時,顯然兩三角形全等;第二:當CP為圓O的直徑時,此時兩三角形全等。
科目:初中數(shù)學(xué) 來源: 題型:
| BC |
| BD |
| 3 |
| 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| CP+DP |
| BP+AP |
| AP |
| DP |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 9 | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com