
解:(1)連接CF、NG,如圖,
∴D、C、G三點共線,
∴CE=CF,DE⊥BC,
∵M(jìn)N是直角三角形CME斜邊上的中線,
∴MN=

CE,
又∵NG是三角形CEF的中位線,
∴NG=

CF,
∴NG=NM;
∴MCGE四點共圓,又∠MEG=45°,
∴∠MNG=90,即三角形MNG為等腰直角三角形,
∴∠NMG=∠NGM=45,MG=

MN.
(2)連接CF,CD,BE,NG,如圖,
∵△ABC是等腰直角三角形,CD是底邊中線,
∴CD⊥AB,∠ADC=90°,又∠EDF=90°,∠BDE=∠CDF,
在△BDE和△CDF中,

,

∴△BDE≌△CDF(SAS),
∴BE=CF,∠BED=∠DFC,
∵在△CBE中,MN是中線,
∴∠MNC=∠BEC,MN=

BE,
延長EC交DF于P,
∵在△ECF中,GN是中線,
∴GN=

CF,∠CNG=∠PCF,
∴∠MNC+∠CNG=∠BEC+∠PCF,
=(∠BED+∠DEP)+(∠DPE-∠PFC),
=∠DFC+∠DEP+∠DPE-∠DFC,
=∠DEP+∠DPE,
∵Rt△EDF中,∠EDF=90°,
∴∠DEP+∠DPE=180°-90°=90°,
∴∠MNG=90°,
∴△MNG是直角三角形,
又∵BE=CF,
∴MN=NG,
∴△MNG是等腰直角三角形,
∴∠NMG=∠NGM=45°,MG=

MN;
(3)

.
分析:(1)連接NG、CF,由題意可得CE=CF,易證MCGE四點共圓,即MN=NG,根據(jù)圓周角和圓心角的關(guān)系,可得∠MNG=90,即可證得;
(2)連接CF,CD,BE,NG,易證△BDE≌△CDF,則BE=CF,根據(jù)三角形中位線的性質(zhì),可得MN=NG,∠GNC+∠MNC=90°,即△MNG是等腰直角三角形,即可證得;
(3)連接PD,DM,PD為三角形ABF中位線,PD平行AF,PD=

AF,在三角形ABC中,DM為中位線,DM=

AC,MN=

BE=

CF,D,M,N共線,DN=

(BC+CF),BC=AC,DP=DN,三角形DPN是等腰直角三角形,PN/CF=


=


=

(

+1).
點評:本題主要考查了等腰直角三角形、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定和性質(zhì),要熟練掌握等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì),要注意根據(jù)等腰三角形的性質(zhì)和相似三角形的判定和性質(zhì),借助輔助線來解答.