欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,點(diǎn)P在x軸上,且數(shù)學(xué)公式,點(diǎn)M也在x軸上,在OA上找點(diǎn)N,以P、M、N為頂點(diǎn)作正方形,則ON=________(如結(jié)果中有根號(hào),請(qǐng)保留根號(hào)).

2或3-或3+
分析:根據(jù)題意,因?yàn)镻N是邊還是對(duì)角線沒(méi)有明確,所以分①PN是正方形的邊長(zhǎng),②PN是正方形的對(duì)角線,且∠OPN=45°與∠OPN=135°兩種情況進(jìn)行討論,設(shè)出ON的長(zhǎng)度是2x,然后表示出正方形的邊長(zhǎng)與OP的長(zhǎng)度,再根據(jù)OP的長(zhǎng)度列式求解.
解答:設(shè)ON=2x,
①如圖1,當(dāng)PN是正方形的邊長(zhǎng)時(shí),

∵∠AOP=30°,
∴OP=2x•cos30°=2x×=x,
又∵OP=,
∴x=1,
∴ON=2x=2;
②如圖2,PN是正方形的對(duì)角線,且∠OPN=45°時(shí)

∵∠AOP=30°,
∴OM=2x•cos30°=2x×=x,
MP=MN=ON•sin30°=2x×=x,
又∵OP=
x+x=
解得x=,
∴ON=2x=3-
③如圖3,PN是正方形的對(duì)角線,且∠OPN=135°時(shí),

∵∠AOP=30°,
∴OM=2x•cos30°=2x×=x
MP=MN=ON•sin30°=2x×=x,
又∵OP=,
x-x=,
解得x=,
∴ON=2x=3+
綜上所述,ON的值為:2或3-或3+
故答案為:2或3-或3+
點(diǎn)評(píng):本題主要考查了解直角三角形,坐標(biāo)與圖形的性質(zhì),利用了正方形的性質(zhì),30°角的正弦與余弦,難度不是很大,但要注意分情況討論,容易漏解而導(dǎo)致出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,點(diǎn)M在x軸上,以點(diǎn)M為圓心,2.5長(zhǎng)為半徑的圓交y軸于A、B兩點(diǎn),交x軸于C(精英家教網(wǎng)x1,0)、D(x2,0)兩點(diǎn),(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的兩根.
(1)求點(diǎn)C、D及點(diǎn)M的坐標(biāo);
(2)若直線y=kx+b切⊙M于點(diǎn)A,交x軸于P,求PA的長(zhǎng);
(3)⊙M上是否存在這樣的點(diǎn)Q,使點(diǎn)Q、A、C三點(diǎn)構(gòu)成的三角形與△AOC相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),并求出過(guò)A、C、Q三點(diǎn)的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過(guò)點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.若函數(shù)y=
k
x
(x<0)的圖象過(guò)C點(diǎn),則k的值是( 。
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過(guò)點(diǎn)C精英家教網(wǎng)的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過(guò)點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)A在y軸上,⊙A與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)D(0,3)和點(diǎn)E(0,精英家教網(wǎng)-1)
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的二次函數(shù)的解析式;
(2)若經(jīng)過(guò)第一、二、三象限的一動(dòng)直線切⊙A于點(diǎn)P(s,t),與x軸交于點(diǎn)M,連接PA并延長(zhǎng)與⊙A交于點(diǎn)Q,設(shè)Q點(diǎn)的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時(shí),求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)I在x軸上,以I為圓心、r為半徑的半圓I與x軸相交于點(diǎn)A、B,與y軸相精英家教網(wǎng)交于點(diǎn)D,順次連接I、D、B三點(diǎn)可以組成等邊三角形.過(guò)A、B兩點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn)P也在半圓I上.
(1)證明:無(wú)論半徑r取何值時(shí),點(diǎn)P都在某一個(gè)正比例函數(shù)的圖象上.
(2)已知兩點(diǎn)M(0,-1)、N(1、0),且射線MN與拋物線y=ax2+bx+c有兩個(gè)不同的交點(diǎn),請(qǐng)確定r的取值范圍.
(3)請(qǐng)簡(jiǎn)要描述符合本題所有條件的拋物線的特征.

查看答案和解析>>

同步練習(xí)冊(cè)答案