分析 (1)先根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫(xiě)出A1、B1、C1的坐標(biāo),然后描點(diǎn),再連結(jié)A1B1、A1C1和B1C1即可;
(2)通過(guò)構(gòu)造直角三角形旋轉(zhuǎn),畫(huà)出△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后CA的對(duì)應(yīng)線段CA2,CB的對(duì)應(yīng)線段CB2,這樣可得到△A2B2C,再利用勾股定理計(jì)算出BC,然后根據(jù)扇形面積公式計(jì)算線段BC旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.
解答 解:(1)如圖1,![]()
(2)如圖2,![]()
BC=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
所以BC掃過(guò)的面積S扇形=$\frac{90π×(\sqrt{17})^{2}}{360}$=$\frac{17}{4}$π.
點(diǎn)評(píng) 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過(guò)作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.也考查了扇形面積的計(jì)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com