分析 先由三角形的中位線定理求出四邊相等,然后由AC⊥BD入手,進(jìn)行正方形的判斷.
解答 證明:連接AC、BD,
∵四邊形ABCD是正方形,![]()
∴AC=BD,AC⊥BD,
在△ABC中,F(xiàn)、G分別是AB、BC的中點(diǎn),
故可得:FG=$\frac{1}{2}$AC,同理EH=$\frac{1}{2}$AC,GH=$\frac{1}{2}$BD,EF=$\frac{1}{2}$BD,
在四邊形ABCD中,AC=BD,
∴EF=FG=GH=HE,
∴四邊形EFGH是菱形.
在△ABD中,E、H分別是AB、AD的中點(diǎn),
則EH∥BD,
同理GH∥AC,
又∵AC⊥BD,
∴EH⊥HG,
∴四邊形EFGH是正方形.
點(diǎn)評 此題考查了正方形的判定,解題的關(guān)鍵是掌握三角形中位線定理、理解既是矩形又是菱形的四邊形是正方形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (350,500) | B. | (-350,-500) | C. | (350,-500) | D. | (-350,500) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (63,64) | B. | (65,64) | C. | (31,32) | D. | (127,128) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com