分析 根據外角與內角性質得出∠BAC的度數(shù),再利用角平分線的性質以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
解答
解:延長BA,作PN⊥BD,PF⊥BA,PM⊥AC,
設∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
∵$\left\{\begin{array}{l}{AP=PA}\\{PM=PF}\end{array}\right.$,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.
故答案為:50°.
點評 此題主要考查了角平分線的性質以及三角形外角的性質和直角三角全等的判定等知識,根據角平分線的性質得出PM=PN=PF是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | -2017 | B. | 2017 | C. | $\frac{1}{2017}$ | D. | -$\frac{1}{2017}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com