如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線(xiàn)段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
![]()
證明見(jiàn)解析
【解析】證明:(1)∵△ABC是等邊三角形,∴∠ABC=60°。
∵∠EFB=60°,∴∠ABC=∠EFB!郋F∥DC(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)。
∵DC=EF,∴四邊形EFCD是平行四邊形。
(2)連接BE。![]()
∵BF=EF,∠EFB=60°,∴△EFB是等邊三角形。
∴EB=EF,∠EBF=60°。
∵DC=EF,∴EB=DC。
∵△ABC是等邊三角形,∴∠ACB=60°,AB=AC。
∴∠EBF=∠ACB!唷鰽EB≌△ADC(SAS)!郃E=AD。
(1)由△ABC是等邊三角形得到∠B=60°,而∠EFB=60°,由此可以證明EF∥DC,而DC=EF,然后即可證明四邊形EFCD是平行四邊形;
(2)如圖,連接BE,由BF=EF,∠EFB=60°可以推出△EFB是等邊三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又△ABC是等邊三角形,所以得到∠ACB=60°,AB=AC,由SAS即可證明△AEB≌△ADC,利用全等三角形的性質(zhì)就證明AE=AD。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com