如圖,AB是⊙O的直徑,直線EF切⊙O于點C,AD⊥EF于點D.
![]()
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.(結(jié)果保留
)
(1)證明見試題解析;(2)
.
【解析】
試題分析:(1)連接OC,由切線的性質(zhì)證得OC⊥EF,從而證明OC∥AD,再根據(jù)等邊對等角和平行線的性質(zhì)可證得∠BAC=∠OCA和∠OCA=∠DAC,進(jìn)而可知∠DAC=∠BAC.
(2)由于陰影部分的面積=S梯形OCDA﹣S扇形OCA,所以先求出梯形的面積和扇形OCA的面積即可.
試題解析:
(1)證明:連接OC
∵直線EF切⊙O 于點C
∴OC⊥EF
∵AD⊥EF
∴OC∥AD
∴∠OCA=∠DAC
∵ OA=OC
∴∠BAC=∠OCA
∴∠DAC=∠BAC
即AC平分∠BAD
(2)∵∠ACD=30°,∠OCD=90°
∴∠OCA=60°.
∵OC=OA
∴△OAC是等邊三角形
∵⊙O的半徑為2
∴AC=OA=OC=2,∠AOC=60°
∵在Rt△ACD中,AD=
AC=1
由勾股定理得:DC=![]()
∴陰影部分的面積=S梯形OCDA﹣S扇形OCA
=
×(2+1)×
﹣![]()
![]()
∴陰影部分的面積為:![]()
考點: ①切線的性質(zhì);②扇形的面積的計算;③等邊三角形的性質(zhì)與判定
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com