在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板放在第一象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(1,0),如圖所示,拋物線y=ax2-ax-2經(jīng)過點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
|
分析:(1)首先過點(diǎn)B作BD⊥x軸,垂足為D,易證得△BDC≌△CAO,即可得BD=OC=1,CD=OA=2,則可求得點(diǎn)B的坐標(biāo); (2)利用待定系數(shù)法即可求得二次函數(shù)的解析式; (3)分別從①以AC為直角邊,點(diǎn)C為直角頂點(diǎn),則延長BC至點(diǎn)P1使得P1C=BC,得到等腰直角三角形ACP1,過點(diǎn)P1作P1M⊥x軸,②若以AC為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,過點(diǎn)P2作P2N⊥y軸,③若以AC為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,過點(diǎn)P3作P3H⊥y軸,去分析則可求得答案. 解答:解:(1)過點(diǎn)B作BD⊥x軸,垂足為D, ∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°, ∴∠BCD=∠CAO, 又∵∠BDC=∠COA=9°,CB=AC, ∴△BDC≌△CAO, ∴BD=OC=1,CD=OA=2, ∴點(diǎn)B的坐標(biāo)為(3,1); (2)∵拋物線y=ax2-ax-2過點(diǎn)B(3,1), ∴1=9a-3a-2, 解得:a= ∴拋物線的解析式為y= (3)假設(shè)存在點(diǎn)P,使得△ACP是直角三角形, ①若以AC為直角邊,點(diǎn)C為直角頂點(diǎn), 則延長BC至點(diǎn)P1使得P1C=BC,得到等腰直角三角形ACP1,過點(diǎn)P1作P1M⊥x軸,如圖(1), ∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC, ∴CM=CD=2,P1M=BD=1, ∴P1(-1,-1),經(jīng)檢驗(yàn)點(diǎn)P1在拋物線y= 、谌粢訟C為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP2⊥CA,且使得AP2=AC, 得到等腰直角三角形ACP2,過點(diǎn)P2作P2N⊥y軸,如圖(2), 同理可證△AP2N≌△CAO, ∴NP2=OA=2,AN=OC=1, ∴P2(-2,1),經(jīng)檢驗(yàn)P2(-2,1)也在拋物線y= 、廴粢訟C為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP3⊥CA,且使得AP3=AC, 得到等腰直角三角形ACP3,過點(diǎn)P3作P3H⊥y軸,如圖(3), 同理可證△AP3H≌△CAO, ∴HP3=OA=2,AH=OC=1, ∴P3(2,3),經(jīng)檢驗(yàn)P3(2,3)不在拋物線y= 故符合條件的點(diǎn)有P1(-1,-1),P2(-2,1)兩點(diǎn).
點(diǎn)評:此題考查了全等三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,等腰直角三角形的性質(zhì)等知識.此題綜合性和強(qiáng),難度較大,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想、方程思想與分類討論思想的應(yīng)用的應(yīng)用. |
|
二次函數(shù)綜合題. |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com