如圖,E是正方形ABCD的邊AB上的動點(diǎn), EF⊥DE交BC于點(diǎn)F.若正方形的邊長為4, AE=
,BF=
.則
與
的函數(shù)關(guān)系式為 .![]()
![]()
解析試題分析:根據(jù)正方形的性質(zhì)可得∠DAE=∠EBF=90°,AD=AB,由EF⊥DE可得∠ADE=∠FEB,即可證得△ADE∽△BEF,根據(jù)相似三角形的性質(zhì)求解即可.
∵ABCD是正方形,
∴∠DAE=∠EBF=90°,AD=AB,
∴∠ADE+∠DEA=90°,
∵EF⊥DE,
∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB,
∴△ADE∽△BEF
∴
.
∵AD=AB=4,
∴BE=4-x,
∴
,解得
.
考點(diǎn):正方形的性質(zhì),直角三角形的性質(zhì),相似三角形的判定與性質(zhì)
點(diǎn)評:相似三角形的判定與性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考常見題,一般難度不大,需熟練掌握.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
| C、a | ||
| D、2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com