分析 (1)由正方形ABCD,得到四條邊相等,四個(gè)角為直角,利用SAS即可得證;
(2)由(1)△BCE≌△CDF,得到一對(duì)角相等,利用同角的余角相等及垂直的定義即可得證;
(3)連接DE,首先證明△DGE是直角三角形,利用勾股定理結(jié)合正方形的性質(zhì)即可求出AE,進(jìn)一步得出BE.
解答
解:(1)∵四邊形ABCD是正方形,
∴DC=BC,∠DCF=∠B=90°,
在△DCF和△CBE中,
$\left\{\begin{array}{l}{BE=CF}\\{∠DCF=∠B}\\{BC=DC}\end{array}\right.$,
∴△DCF≌△CBE(SAS);
(2)∵△DCF≌△CBE,
∴∠CDF=∠ECB,
∵∠ECB+∠GCD=90°,
∴∠CDF+∠GCD=90°,即∠DGC=90°,
則CE⊥DF;
(3)如圖,連接DE,
∵△DCF≌△CBE,
∴∠BCE=∠CDF,
∵∠CDF+∠DFC=90°,
∴∠BCE+∠DFC=90°,
∴∠CGF=90°;
∴∠EGD=90°,
∴△DGE是直角三角形,
∵DE2=DG2+GE2=18,
∵CD=4,
∴AD=CD=4,
∴AE=$\sqrt{D{E}^{2}-C{D}^{2}}$=$\sqrt{18-16}$=$\sqrt{2}$,
∴BE=AB-AE=4-$\sqrt{2}$.
故答案為:(3)4-$\sqrt{2}$.
點(diǎn)評(píng) 此題考查了四邊形綜合題,涉及到了全等三角形的判定與性質(zhì),勾股定理,以及正方形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| x | … | -3 | -$\frac{5}{2}$ | -2 | -1 | 0 | 1 | 2 | $\frac{5}{2}$ | 3 | … |
| y | … | 3 | $\frac{5}{4}$ | m | -1 | 0 | -1 | 0 | $\frac{5}{4}$ | 3 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 方案一 | B. | 方案二 | C. | 方案三 | D. | 方案四 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com