如圖,在平面直角坐標(biāo)系xOy中,AB⊥x軸于點(diǎn)B,AB=3,tan∠AOB=
,將△OAB繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△OA1B1;再將△OA1B1繞著線段OB1的中點(diǎn)旋轉(zhuǎn)180°,得到△OA2B1,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B、B1、A2.
(1)求拋物線的解析式.
(2)在第三象限內(nèi),拋物線上的點(diǎn)P在什么位置時(shí),△PBB1的面積最大?求出這時(shí)點(diǎn)P的坐標(biāo).
(3)在第三象限內(nèi),拋物線上是否存在點(diǎn)Q,使點(diǎn)Q到線段BB1的距離為
?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
|
分析:(1)首先根據(jù)旋轉(zhuǎn)的性質(zhì)確定點(diǎn)B、B1、A2三點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求得拋物線的解析式; (2)求出△PBB1的面積表達(dá)式,這是一個(gè)關(guān)于P點(diǎn)橫坐標(biāo)的二次函數(shù),利用二次函數(shù)求極值的方法求出△PBB1面積的最大值;值得注意的是求△PBB1面積的方法,如題圖所示; (3)本問引用了(2)問中三角形面積表達(dá)式的結(jié)論,利用此表達(dá)式表示出△QBB1的面積,然后解一元二次方程求得Q點(diǎn)的坐標(biāo). 解答:解:(1)∵AB⊥x軸,AB=3,tan∠AOB= ∴B(-4,0),B1(0,-4),A2(3,0). ∵拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B、B1、A2, ∴ 解得 ∴拋物線的解析式為:y= (2)點(diǎn)P是第三象限內(nèi)拋物線y= 如圖,過點(diǎn)P作PC⊥x軸于點(diǎn)C.
設(shè)點(diǎn)P的坐標(biāo)為(m,n),則m<0,n<0,n= 于是PC=|n|=-n=- S△PBB1=S△PBC+S梯形PB1OC-S△OBB1 。 。 。剑 當(dāng)m=-2時(shí),△PBB1的面積最大,這時(shí),n=- (3)假設(shè)在第三象限的拋物線上存在點(diǎn)Q(x0,y0),使點(diǎn)Q到線段BB1的距離為 如答圖,過點(diǎn)Q作QD⊥BB1于點(diǎn)D.
由(2)可知,此時(shí)△QBB1的面積可以表示為:- 在Rt△OBB1中,BB1= ∵S△QBB1= ∴- 解得x0=-1或x0=-3 當(dāng)x0=-1時(shí),y0=-4;當(dāng)x0=-3時(shí),y0=-2, 因此,在第三象限內(nèi),拋物線上存在點(diǎn)Q,使點(diǎn)Q到線段BB1的距離為 點(diǎn)評:本題綜合考查了待定系數(shù)法求拋物線解析式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一元二次方程、旋轉(zhuǎn)與坐標(biāo)變化、圖形面積求法、勾股定理等重要知識點(diǎn).第(2)問起承上啟下的作用,是本題的難點(diǎn)與核心,其中的要點(diǎn)是坐標(biāo)平面內(nèi)圖形面積的求解方法,這種方法是壓軸題中常見的一種解題方法,同學(xué)們需要認(rèn)真掌握. |
|
考點(diǎn):二次函數(shù)綜合題. |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com