| 解:(1)①P=1,m= ②連結(jié)TM、ME、EN,NQ、MQ(如圖1) ∵OE切于點(diǎn)E,l∥x軸 ∴∠OEQ=∠QFM=90°,且NF=MF 又∵QF=2-1=1=EF, ∴四邊形MENQ是平行四邊形, ∴QN∥ME 在Rt△QFN中,QF=1,QN=2, ∴∠FQN=60° 依題意,在四邊形OEQT中,∠TOE=60°,∠OTQ=∠OEQ=90°, ∴∠TQE=120° ∴∠TQE+∠NQE =180°, ∴T、Q、N在同一直線上 ∴ME∥TN,ME≠TN,且∠TMN=90°, 又∠TNM=30°, ∴MT=2, 又QE=QN=2, ∴△EQN為等邊三角形, ∴EN=2, ∴EN=MT, ∴四邊形MENT是等腰梯形; 注:也可證明∠MTN=∠ENT=60° |
|
| (2)a的值不變,理由如下: 如圖,DE與MN交于點(diǎn)F,連結(jié)MD、ME, ∵DE是⊙O的直徑, ∴∠DME=90°, 又∵∠MFD=90°, ∴∠MDE=∠EMN, ∴tan∠MDE=tan∠EMN , ∴ 即 ∵在平移過程中,圖形的形狀及特征保持不變,拋物線 ∴可以將問題轉(zhuǎn)化為:點(diǎn)D在y軸上,點(diǎn)M、N在x軸上進(jìn)行探索(如圖2), 由圖形的對稱性可得點(diǎn)D為拋物線頂點(diǎn), 依題意,得,設(shè)D(0,k)(k=2r-1>0),M(x1,0),N(x2,0)(x2<x2), 則經(jīng)過M、D、N三點(diǎn)的拋物線為 當(dāng)y=0時(shí),x1、x2為 ∴ 代入(1)式得 ∴ 又k>0, ∴a=-1, 故a的值不變。 |
|
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
P點(diǎn)為拋物線
(
為常數(shù),
)上任一點(diǎn),將拋物線繞頂點(diǎn)
逆時(shí)針旋轉(zhuǎn)
后得到的新圖象與
軸交于
、
兩點(diǎn)(點(diǎn)
在點(diǎn)
的上方),點(diǎn)
為點(diǎn)
旋轉(zhuǎn)后的對應(yīng)點(diǎn).
![]()
1.(1)當(dāng)
,點(diǎn)
橫坐標(biāo)為4時(shí),求
點(diǎn)的坐標(biāo);
2.(2)設(shè)點(diǎn)
,用含
、
的代數(shù)式表示
;
3.(3) 如圖,點(diǎn)
在第一象限內(nèi), 點(diǎn)
在
軸的正半軸上,點(diǎn)
為
的中點(diǎn),
平分
,
,當(dāng)
時(shí),求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年廣東省深圳市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年福建省泉州市中考數(shù)學(xué)試卷(樣卷)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市九年級升學(xué)考試(樣卷)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在第一象限內(nèi),直線
與過點(diǎn)
且平行于
軸的直線
相交于點(diǎn)
,半徑為
的⊙
與直線
、
軸分別相切于點(diǎn)
、
,且與直線
分別交于不同的
、
兩點(diǎn).
(1)當(dāng)點(diǎn)A的坐標(biāo)為
時(shí),
① 填空:
= ,
= ,
= ;
②如圖2,連結(jié)![]()
,
交直線
于
,當(dāng)
時(shí),試說明以
、
、
、
為頂點(diǎn)的四邊形是等腰梯形;
(2)在圖1中,連結(jié)
并延長交⊙
于點(diǎn)
,試探索:對不同的
取值,經(jīng)過
、
、
三點(diǎn)的拋物線
,
的值會變化嗎?若不變,求出
的值;若變化,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com