欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.統(tǒng)計(jì)得到一組數(shù)據(jù),其中最大值是132,最小值是50,取組距為10,可以分成( 。
A.10組B.9組C.8組D.7組

分析 根據(jù)組數(shù)=(最大值-最小值)÷組距計(jì)算,注意小數(shù)部分要進(jìn)位.

解答 解:在樣本數(shù)據(jù)中最大值為321,最小值為50,它們的差是132-50=82,
已知組距為10,由于=$\frac{82}{10}$=8.2,
故可以分成9組.
故選:B.

點(diǎn)評(píng) 本題考查的是組數(shù)的計(jì)算,屬于基礎(chǔ)題,只要根據(jù)組數(shù)的定義“數(shù)據(jù)分成的組的個(gè)數(shù)稱為組數(shù)”來解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.已知:a、b均為實(shí)數(shù),下列式子:①$\sqrt{5}$;②$\sqrt{a}$;③$\sqrt{{a}^{2}+1}$;④$\sqrt{\frac{1}{6}}$;⑤$\sqrt{{a}^{2}-^{2}}$.其中是二次根式是個(gè)數(shù)有( 。﹤(gè).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.大家知道$\sqrt{2}$是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此$\sqrt{2}$的小數(shù)部分我們不可能全部地寫出來,于是小明用$\sqrt{2}-1$來表示$\sqrt{2}$的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理的,因?yàn)?\sqrt{2}$的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請(qǐng)解答:已知:2+$\sqrt{3}$=x+y,其中x是整數(shù),且0<y<1,求x-y的相反數(shù)的整數(shù)部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,扇形AOB的半徑為1,∠AOB=90°,點(diǎn)C在線段OB上移動(dòng)(不包括端點(diǎn)O、B),以AC為直徑作半圓,弧AB與半圓AC圍成的陰影部分面積為S1,弧AB與半圓AC及線段BC圍成的陰影部分面積為S2,記S=S1+S2.則S的取值范圍是0.3925<S<0.5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.解不等式并把解集在數(shù)軸上表示出來
(1)3x-1<7-x    
                         
(2)$\frac{1-2x}{3}$≥1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知關(guān)于x的方程x2-4x+3=0的兩個(gè)根是m和n,則mn=3,m+n=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.推理填空:完成下列證明:如圖,E在△ABC的邊AC上,且∠ABF=∠C,AF平分∠BAE交BE于點(diǎn)F,F(xiàn)D∥BC交AC于D.求證:AC-AB=DC.
解:∵FD∥BC
∴∠ADF=∠C兩直線平行,同位角相等,
∵∠ABF=∠C
∴∠ABF=∠ADF等量代換
∵AF平分∠BAE
∴∠BAF=∠CAF(角平分線的定義)
在△BAF和△DAF中
$\left\{\begin{array}{l}{∠BAF=∠DAF}\\{∠ABF=∠ADF}\\{\;}\end{array}\right.$
AF=AF
∴△BAF≌△DAFAAS
∴AB=AD
∵AC-AD=DC
∴AC-AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.隨著襄陽市近幾年城市建設(shè)的快速發(fā)展,對(duì)花木的需求量逐年提高.某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤y1與投資量x成正比例關(guān)系,如圖1所示;種植花卉的利潤y2與投資量x成二次函數(shù)關(guān)系,如圖2所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以10萬元資金投入種植花卉和樹木,求他獲得的最大利潤是多少?
(3)在(2)的條件下,根據(jù)對(duì)市場(chǎng)需求的調(diào)查,這位專業(yè)戶決定投入種植樹木的資金不得高于投入種植花卉的資金,他至少獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于( 。
A.90°B.135°C.270°D.315°

查看答案和解析>>

同步練習(xí)冊(cè)答案