已知:如圖,直線y=-
x+4
與x軸相交于點(diǎn)A,與直線y=
x相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo).
(2)請(qǐng)判斷△OPA的形狀并說明理由.
(3)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關(guān)系式.
②當(dāng)t為何值時(shí),S最大,并求S的最大值.
|
解:(1) 解得: ∴點(diǎn)P的坐標(biāo)為(2, (2)將y=0代入y= ∴x=4,即OA=4 4分 做PD⊥OA于D,則OD=2,PD=2 ∵tan∠POA= ∴∠POA=60° ∵OP= ∴△POA是等邊三角形 6分 (3)①當(dāng)0<t≤4時(shí),如下圖
在Rt△EOF中,∵∠EOF=60°,OE=t ∴EF= ∴S= 當(dāng)4<t<8時(shí),如下圖
設(shè)EB與OP相交于點(diǎn)C 易知:CE ∴AF=4- ∴OF=OA-AF=4-(4- ∴S= = 。剑 、诋(dāng)0<t≤4時(shí),S= 當(dāng)4<t<8時(shí),S=- t= ∵ |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:廈門市2007年中考模擬試題(一)、數(shù)學(xué)試卷-華師版 題型:044
已知:如圖,直線y=-x+3與x軸、y軸分別交于點(diǎn)B、C,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B、C,點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn).
(1)求拋物線的解析式.
(2)若點(diǎn)P在直線BC上,且S△PAC=
S△PAB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2008年山東省濟(jì)南市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
已知:如圖,直線y=-
x+4
與x軸相交于點(diǎn)A,與直線y=
x相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo).
(2)請(qǐng)判斷△OPA的形狀并說明理由.
(3)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B,設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關(guān)系式.
②當(dāng)t為何值時(shí),S最大,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省徐州市中考模擬數(shù)學(xué)試卷(B卷)(帶解析) 題型:解答題
已知:如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.![]()
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ長度取得最大值?其最大值是多少?
②是否存在點(diǎn)P,使△OAQ為直角三角形?若存在,求點(diǎn)P坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:北京同步題 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com