【題目】某公司組織員工出去旅游,公司聯(lián)系旅游公司提供車(chē)輛,該公司現(xiàn)有50座與35座兩種車(chē)輛,如果用35座的車(chē),會(huì)有5人沒(méi)座;如果全部換乘50座的車(chē),則可少用2輛車(chē),而且多出15個(gè)座位.
若該公司只能單獨(dú)租其中一種車(chē),則分別需要多少輛?
若35座車(chē)的日租金為250元
輛,50座的日租金為320元
輛,有哪種方案能使座位剛好且費(fèi)用最少?用這種方案公司要出多少資金.
【答案】(1)8,6;(2)35座1輛,50座5輛,1850.
【解析】
根據(jù)題意列出二元一次方程組進(jìn)行求解即可;
用一次函數(shù)的關(guān)系表示公司租車(chē)資金,根據(jù)題意和函數(shù)性質(zhì)進(jìn)行判斷即可得出.
解:
設(shè)租35座的車(chē)需x輛,20座的車(chē)需y輛,由題意得:
,解得:![]()
故只租35座的需8輛,只租50座的需6輛.
由
得,該公司組織出游的員工總數(shù)為
人,
設(shè)租35座的需要m輛,其余人乘坐50座客車(chē),則所花金額為y,
![]()
化簡(jiǎn)得:![]()
由于要求能使座位剛好且費(fèi)用最少,
當(dāng)
時(shí)符合題意
故租用35座汽車(chē)1輛,50座客車(chē)5輛時(shí),費(fèi)用最低為1850元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:
![]()
經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)4臺(tái)B型設(shè)備少4萬(wàn)元.
(1)求a、b的值;
(2)經(jīng)預(yù)算:市治污公司購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)47萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;
(3)在(2)問(wèn)的條件下,若該月要求處理西太湖的污水量不低于1860噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】模型建立:
(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線(xiàn)ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于D,過(guò)B作BE⊥ED于E.
![]()
求證:△BEC≌△CDA.
模型應(yīng)用:
(2)已知直線(xiàn)l1:y=
x+4與y軸交與A點(diǎn),將直線(xiàn)l1繞著A點(diǎn)順時(shí)針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式.
(3)如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,6),A、C分別在坐標(biāo)軸上,P是線(xiàn)段BC上動(dòng)點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線(xiàn)y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),DE⊥AB于E,F(xiàn)在AC上,BD=DF;
證明:(1)CF=EB.
(2)AB=AF+2EB.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解同學(xué)對(duì)體育活動(dòng)的喜愛(ài)情況,某校設(shè)計(jì)了“你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))”的調(diào)查問(wèn)卷.該校對(duì)本校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計(jì)圖的一部分.請(qǐng)根據(jù)以上信息解答以下問(wèn)題:
(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)請(qǐng)補(bǔ)全圖1并標(biāo)上數(shù)據(jù).
(3)若該校共有學(xué)生900人,請(qǐng)你估計(jì)該校最喜歡跳繩項(xiàng)目的學(xué)生約有多少人?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+
-
=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點(diǎn).
![]()
(1)求該拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)交y軸于C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線(xiàn)的第二象限圖象上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若不存,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A1B1C1 (要求A與A1,B與B1,C與C1相對(duì)應(yīng));
(2)求△ABC的面積;
(3)在直線(xiàn)l上找一點(diǎn)P,使得△PAC的周長(zhǎng)最小.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點(diǎn),且AE=CF.
![]()
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點(diǎn),連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com