分析 (1)連接OD,根據(jù)等邊對(duì)等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線(xiàn);
(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2$\sqrt{2}$AE,CE=4AE,然后在RT△BEC中,即可求得tanC的值.
解答
(1)證明:連接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切線(xiàn);
(2)解:連接BE,
∵AB是直徑,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=2$\sqrt{2}$AE,
在RT△BEC中,tanC=$\frac{BE}{CE}$=$\frac{2\sqrt{2}AE}{4AE}$=$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì),平行線(xiàn)的判定和性質(zhì),切線(xiàn)的判定,勾股定理的應(yīng)用以及直角三角函數(shù)等,是一道綜合題,難度中等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 20% | B. | 40% | C. | -220% | D. | 30% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1對(duì) | B. | 2對(duì) | C. | 3對(duì) | D. | 4對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | AO上 | B. | OB上 | C. | BC上 | D. | CD上 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com