如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過T作AD的垂線交AD的延長(zhǎng)線于點(diǎn)C.
(1)求證∶CT為⊙O的切線;
(2)若⊙O半徑為2,CT=
,求AD的長(zhǎng).
|
分析∶(1)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線; (2)證明四邊形OTCE為矩形,求得OE的長(zhǎng),在直角△OAE中,利用勾股定理即可求解. 解答∶(1)證明∶連接OT, ∵OA=OT, ∴∠OAT=∠OTA, 又∵AT平分∠BAD, ∴∠DAT=∠OAT, ∴∠DAT=∠OTA, ∴OT∥AC,(3分) 又∵CT⊥AC, ∴CT⊥OT, ∴CT為⊙O的切線;(5分) (2)解∶過O作OE⊥AD于E,則E為AD中點(diǎn), 又∵CT⊥AC, ∴OE∥CT, ∴四邊形OTCE為矩形,(7分) ∵CT= ∴OE= 又∵OA=2, ∴在Rt△OAE中, ∴AD=2AE=2.(10分)
點(diǎn)評(píng)∶本題主要考查了切線的判定以及性質(zhì),證明切線時(shí)可以利用切線的判定定理把問題轉(zhuǎn)化為證明垂直的問題. |
|
考點(diǎn)∶切線的判定與性質(zhì);勾股定理;圓周角定理. |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| AD |
| DC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com