已知△ABC中,AB=AC,以AB為直徑的⊙O交BC于D,交AC于E.
(1)如圖,若AB=6,CD=2,求CE的長.
(2)如圖,當(dāng)∠A為銳角時,連接BE,試判斷∠BAC與∠CBE的關(guān)系,并證明你的結(jié)論.
![]()
(3)若上圖中的邊AB不動,邊AC繞點A按逆時針旋轉(zhuǎn),當(dāng)∠BAC為鈍角時,如下圖,CA的延長線與⊙O相交于E.
![]()
請問:∠BAC與∠CBE的關(guān)系是否與(2)中你得出的關(guān)系相同?若相同,請加以證明;若不同,請說明理由.
|
解答: (1)如圖,連接AD.
∵ AB為直徑,∴AD⊥BC.又∵ AB=AC,∴BD=CD.又∵ CD=2,∴BD=2.由上述分析可知 CE·CA=CD·CB.得6·CE=2×(2+2),∴CE=1(2)∠BAC與∠CBE的關(guān)系是:∠BAC=2∠CBE. 證明如下:如圖,連接 AD.
∵ AB為直徑,∴AD⊥BC.又∵ AB=AC,∴∠1=∠2.又∵∠ 2=∠CBE,∴∠BAC=2∠CBE.(3)相同,證明如下: 如圖,連接 AD.
∵ AB為直徑,∴AD⊥BC.又∵ AB=AC,∴∠1=∠2.∵∠ CAD是圓內(nèi)接四邊形AEBD的外角,∴∠ 2=∠CBE,∴∠CAB=2∠CBE.分析:在圖中 AB=AC,△ABC是一個等腰三角形,又由AB是直徑,所以連結(jié)AD,AD⊥BC,則AD是△ABC的高,且∠BAD=∠CAD,BD=DC.由此可進(jìn)一步研究,若連接DE,則∠DEC+∠AED= |
科目:初中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com