如圖,⊙O的半徑為1,點(diǎn)P是⊙O上一點(diǎn),弦AB垂直平分線段OP,點(diǎn)D是劣弧AB上任一點(diǎn)(與端點(diǎn)A、B不重合),DE⊥AB于點(diǎn)E,以點(diǎn)D為圓心、DE長(zhǎng)為半徑作⊙D,分別過(guò)點(diǎn)A、B作⊙D的切線,兩條切線相交于點(diǎn)C.
(1)求弦AB的長(zhǎng);
(2)判斷∠ACB是否為定值,若是,求出∠ACB的大。环駝t,請(qǐng)說(shuō)明理由;
(3)記△ABC的面積為S,若
= 4
,求△ABC的周長(zhǎng).
解:(1)連接OA,取OP與AB的交點(diǎn)為F,則有OA=1.
∵弦AB垂直平分線段OP,∴OF=
OP=
,AF=BF.
在Rt△OAF中,∵AF=
=
=
,
∴AB=2AF=
.
(2)∠ACB是定值.理由如下:
由(1)易知,∠AOB=120°,
因?yàn)辄c(diǎn)D為△ABC的內(nèi)心,所以,連結(jié)AD、BD,
則∠CAB=2∠DAB,∠CBA=2∠DBA,
∴∠DAB ﹢ ∠DBA=
﹙∠CAB + ∠CBA﹚。
又因?yàn)椤?i>DAB+∠DBA=
∠AOB=60°,
所以∠CAB+∠CBA=120°,
所以∠ACB=180°- ﹙CAB+∠CBA﹚ = 60°;
(3)記△ABC的周長(zhǎng)為l,取AC,BC與⊙D的切點(diǎn)分別為G,H,連接DG,DC,DH,則有DG=DH=DE,DG⊥AC,DH⊥BC.
∴
=
AB•DE+
BC•DH+
AC•DG=
(AB+BC+AC) •DE=
l•DE.
∵
=4
, ∴
=4
, ∴l=8
DE.
∵CG,CH是⊙D的切線, ∴∠GCD=
∠ACB=30°,
∴在Rt△CGD中,CD = 2 GD
∴ CG=
DG=
DE, ∴CH=CG=
DE.
又由切線長(zhǎng)定理可知AG=AE,BH=BE,
∴l=AB+BC+AC=2
+2
DE=8
DE,
解得DE=
,
∴△ABC的周長(zhǎng)為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 2 |
| 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com