計算
(1)(x2)3-2x3[x3-x2(4x+1)]
(2)(28a3b2c+7a2b3-14a2b2)÷(-7a2b)
(3)(3x-y)2-(2x+y)2+5x(y-x)
(4)982+392+4-99×101.
分析:(1)首先進行乘方運算,去掉小括號,然后合并同類項,再去掉中括號,最后進一步合并同類項即可;
(2)首先把除法運算轉化為乘法運算,然后根據乘法分配原則進行乘法運算,最后再進行加減法運算即可;
(3)利用完全平方公式和乘法分配原則進行乘法運算,然后合并同類項即可;
(4)首先對整式進行整理:得982+98×4+4-(100-1)(100+1),然后進一步提取公因式,得:98×102+4-1002+1,最后把98×102寫成(100-2)(100+2)的形式,即可很容易的計算出結果.
解答:解:(1)原式=x
6-2x
3[x
3-4x
3-x
2]=x
6-2x
6+8x
6+2x
5=7x
6+2x
5;
(2)原式=(28a
3b
2c+7a
2b
3-14a
2b
2)×
=28a
3b
2c×
+7a
2b
3×
-14a
2b
2×
=-4abc-b
2+2b;
(3)原式=9x
2-6xy+y
2-4x
2-4xy-y
2+5xy-5x
2=-5xy;
(4)原式=98
2+98×4+4-(100-1)(100+1)=98×102+4-100
2+1=(100+2)(100-2)+4-100
2+1=100
2-4+4-100
2+1=1.
點評:本題主要考查整式的混合運算、完全平方公式的應用,平方差公式的應用等知識點,關鍵在于熟練應用相關計算法則,認真正確進行計算.