【題目】已知拋物線
經(jīng)過點
,
.把拋物線
與線段
圍成的封閉圖形記作
.
(1)求此拋物線的解析式;
(2)點
為圖形
中的拋物線上一點,且點
的橫坐標為
,過點
作
軸,交線段
于點
.當
為等腰直角三角形時,求
的值;
(3)點
是直線
上一點,且點
的橫坐標為
,以線段
為邊作正方形
,且使正方形
與圖形
在直線
的同側(cè),當
,
兩點中只有一個點在圖形
的內(nèi)部時,請直接寫出
的取值范圍.
![]()
【答案】(1)
;(2)-2或-1;(3)-1≤n<1或1<n≤3.
【解析】
(1)把點
,
代入拋物線
得關(guān)于a,b的二元一次方程組,解出這個方程組即可;
(2)根據(jù)題意畫出圖形,分三種情況進行討論;
(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.
解:(1)依題意,得:
解得:
∴此拋物線的解析式
;
(2)設(shè)直線AB的解析式為y=kx+b,依題意得:
解得:
∴直線AB的解析式為y=-x.
∵點P的橫坐標為m,且在拋物線上,
∴點P的坐標為(m,
)
∵
軸,且點Q有線段AB上,
∴點Q的坐標為(m,-m)
① 當PQ=AP時,如圖,∵∠APQ=90°,
軸,
∴![]()
解得,m=-2或m=1(舍去)
![]()
② 當AQ=AP時,如圖,過點A作AC⊥PQ于C,
![]()
∵
為等腰直角三角形,
∴2AC=PQ
![]()
即m=1(舍去)或m=-1.
綜上所述,當
為等腰直角三角形時,求
的值是-2惑-1.;
(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)
∴點E的坐標為(n,n-2)
當點E恰好在拋物線上時,![]()
∴此時n的取值范圍-1≤n<1.
![]()
②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)
當點E在拋物線上時,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此時n的取值范圍1<n≤3.
綜上所述,n的取值范圍為-1≤n<1或1<n≤3.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,3)兩點,點B是拋物線與x軸的另一個交點,點D與點C關(guān)于拋物線對稱軸對稱,作直線AD.點P在拋物線上,過點P作PE⊥x軸,垂足為點E,交直線AD于點Q,過點P作PG⊥AD,垂足為點G,連接AP.設(shè)點P的橫坐標為m,PQ的長度為d.
(1)求拋物線的解析式;
(2)求點D的坐標及直線AD的解析式;
(3)當點P在直線AD上方時,求d關(guān)于m的函數(shù)關(guān)系式,并求出d的最大值;
(4)當點P在直線AD上方時,若PQ將△APG分成面積相等的兩部分,直接寫出m的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( )
![]()
A. ﹣
<m<3 B. ﹣
<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°(AC>BC),用尺規(guī)作圖的方法作線段AD,保留作圖痕跡如圖所示,認真觀察作圖痕跡,若CD=4,BD=5,則AC的長為( 。
![]()
A.6B.9C.12D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=
的圖形交于A(a,4)和B(4,1)兩點
(1)求b,k的值;
(2)若點C(x,y)也在反比例函數(shù)y=
(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當直線與雙曲線沒有交點時,求m的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線
與
軸交于點
,與
軸交于點
,與函數(shù)
的圖象的一個交點為
.
(1)求
,
,
的值;
(2)將線段
向右平移得到對應(yīng)線段
,當點
落在函數(shù)
的圖象上時,求線段
掃過的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線
與
軸交于點
,與
軸交點
,拋物線
經(jīng)過
,
兩點,與
軸交于另一點
.如圖1,點
為拋物線上任意一點,過點
作
軸交
于
.
![]()
(1)求拋物線的解析式;
(2)當
是直角三角形時,求
點坐標;
(3)如圖2,作
點關(guān)于直線
的對稱點
,作直線
與拋物線交于
,設(shè)拋物線對稱軸與
軸交點為
,當直線
經(jīng)過點
時,請你直接寫出
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,點C,D在⊙O上,
連接AD,OC.
![]()
(1)如圖1,求證:AD∥OC;
(2)如圖2,過點C作CE⊥AB于點E,求證:AD=2OE;
(3)如圖3,在(2)的條件下,點F在OC上,且OF=BE,連接DF并延長交⊙O于點G,過點G作CH⊥AD于點H,連接CH,若∠CFG=135°,CE=3,求CH的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com