如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結論:
①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF. 其中正確結論有( )
![]()
A.①②③④ B.①②③ C.①③④ D.①②④
B
【解析】
試題分析:根據(jù)垂直定義、角平分線的性質、直角三角形的性質求出∠POE、∠BOF、∠BOD、∠BOE、∠DOF等角的度數(shù),即可對①②③④進行判斷.
①∵AB∥CD,
∴∠BOD=∠ABO=40°,
∴∠COB=180°-40°=140°,
又∵OE平分∠BOC,
∴∠BOE=
∠COB=
×140°=70°.
②∵OP⊥CD,
∴∠POD=90°,
又∵AB∥CD,
∴∠BPO=90°,
又∵∠ABO=40°,
∴∠POB=90°-40°=50°,
∴∠BOF=∠POF-∠POB=70°-50°=20°,
∠FOD=40°-20°=20°,
∴OF平分∠BOD.
③∵∠EOB=70°,∠POB=90°-40°=50°,
∴∠POE=70°-50°=20°,
又∵∠BOF=∠POF-∠POB=70°-50°=20°,
∴∠POE=∠BOF.
④由②可知∠POB=90°-40°=50°,
∠FOD=40°-20°=20°,
故∠POB≠2∠DOF.
故選B.
考點:平行線的性質,角平分線的性質
點評:解答此題要注意將垂直、平行、角平分線的定義結合應用,弄清圖中線段和角的關系,再進行解答.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com