【題目】如圖,已知⊙O中,AB為弦,直線(xiàn)PO交⊙O于點(diǎn)M、N,PO⊥AB于C,過(guò)點(diǎn)B作直徑BD,連接AD、BM、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線(xiàn);
(3)若AD=6,tan∠M=
,求⊙O的直徑.
![]()
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)5;
【解析】
(1)根據(jù)平行線(xiàn)的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據(jù)切線(xiàn)的判定得出即可;(3)設(shè)BC=x,CM=2x,根據(jù)相似三角形的性質(zhì)和判定求出NC=
x,求出MN=2x+
x=2.5x,OM=
MN=1.25x,OC=0.75x,根據(jù)三角形的中位線(xiàn)性質(zhì)得出0.75x=
AD=3,求出x即可.
(1)∵BD是直徑,
∴∠DAB=90°,
∵PO⊥AB,
∴∠DAB=∠MCB=90°,
∴PM∥AD;
(2)連接OA,
∵OB=OM,
∴∠M=∠OBM,
∴∠BON=2∠M,
∵∠BAP=2∠M,
∴∠BON=∠BAP,
∵PO⊥AB,
∴∠ACO=90°,
∴∠AON+∠OAC=90°,
∵OA=OB,
∴∠BON=∠AON,
∴∠BAP=∠AON,
∴∠BAP+∠OAC=90°,
∴∠OAP=90°,
∵OA是半徑,
∴PA是⊙O的切線(xiàn);
(3)連接BN,
則∠MBN=90°.
∵tan∠M=
,
∴
=
,
設(shè)BC=x,CM=2x,
∵MN是⊙O直徑,NM⊥AB,
∴∠MBN=∠BCN=∠BCM=90°,
∴∠NBC=∠M=90°﹣∠BNC,
∴△MBC∽△BNC,
∴
,
∴BC2=NC×MC,
∴NC=
x,
∴MN=2x+
x=2.5x,
∴OM=
MN=1.25x,
∴OC=2x﹣1.25x=0.75x,
∵O是BD的中點(diǎn),C是AB的中點(diǎn),AD=6,
∴OC=0.75x=
AD=3,
解得:x=4,
∴MO=1.25x=1.25×4=5,
∴⊙O的半徑為5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)C1在邊BC上,將△C1CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△A1AD.A1F平分∠BA1C1,交BD于點(diǎn)F,過(guò)點(diǎn)F作FE⊥A1C1,垂足為E,當(dāng)A1E=3,C1E=2時(shí),則BD的長(zhǎng)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工廠以每噸3000元的價(jià)格購(gòu)進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需
天,每噸售價(jià)4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需
天,每噸售價(jià)4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.
(1)請(qǐng)完成表格并求出y與x的函數(shù)關(guān)系式(不要求寫(xiě)自變量的范圍);
![]()
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD,(點(diǎn)D在⊙O外)AC平分∠BAD.
![]()
(1)求證:CD是⊙O的切線(xiàn);
(2)若DC、AB的延長(zhǎng)線(xiàn)相交于點(diǎn)E,且DE=12,AD=9,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道
上確定點(diǎn)D,使CD與
垂直,測(cè)得CD的長(zhǎng)等于21米,在
上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):
);
(2)已知本路段對(duì)校車(chē)限速為40千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線(xiàn),A、B為切點(diǎn),過(guò)圓上一點(diǎn)C作⊙O的切線(xiàn)CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:10月1日,正值祖國(guó)母親70歲生日,我校兩校區(qū)共有4名教師光榮地加入了群眾游行﹣﹣“揚(yáng)帆遠(yuǎn)航”方陣;一名老師作為志愿者,負(fù)責(zé)廣場(chǎng)人員的集結(jié)和疏散.老師們?cè)谥芤粐?guó)旗下講話(huà)時(shí)說(shuō):“我們的步數(shù)、歡呼聲、氣球浪和笑容都是有指標(biāo)的”確保隊(duì)伍行進(jìn)時(shí)做到萬(wàn)無(wú)一失.載有國(guó)之重器的裝甲車(chē),在閱兵時(shí)更是精確到秒.從東華表至西華表(東、西華表間的距離為96米)所用的時(shí)間是固定的:每輛裝甲車(chē)必須保證36s之內(nèi)通過(guò).如果彩排時(shí)有兩輛裝甲車(chē)同時(shí)從東華表出發(fā),乙的速度是甲的1.1倍,又已知乙到達(dá)西華表的時(shí)間正好比甲提前3s,那么
(1)甲的速度是每秒多少米(結(jié)果精確到1米/秒)?
(2)這兩輛裝甲車(chē)能順利完成彩排任務(wù)嗎?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)對(duì)下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問(wèn)題:
(模型呈現(xiàn))(1)如圖1,
,
,過(guò)點(diǎn)
作
于點(diǎn)
,過(guò)點(diǎn)
作
于點(diǎn)
.由
,得
.又
,可以推理得到
.進(jìn)而得到
,
.我們把這個(gè)數(shù)學(xué)模型稱(chēng)為“
字”模型或“一線(xiàn)三等角”模型;
![]()
(模型應(yīng)用)(2)①如圖2,
,
,
,連接
,
,且
于點(diǎn)
,
與直線(xiàn)
交于點(diǎn)
是
的中點(diǎn);
![]()
②如圖3,在平面直角坐標(biāo)系
中,點(diǎn)
的坐標(biāo)為
,點(diǎn)
為平面內(nèi)任一點(diǎn).若
是以
為斜邊的等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com