【題目】在平面直角坐標(biāo)系中,將二次函數(shù)y=a
(a>0)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到如圖所示的拋物線,該拋物線與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),OA=1,經(jīng)過(guò)點(diǎn)A的一次函數(shù)
(
)的圖象與y軸正半軸交于點(diǎn)C,且與拋物線的另一個(gè)交點(diǎn)為D,△ABD的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動(dòng)點(diǎn)E在一次函數(shù)的圖象下方,求△ACE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
![]()
【答案】(1)
,
;(2)最大值是
,此時(shí)E點(diǎn)坐標(biāo)為![]()
【解析】
(1)先寫(xiě)出平移后的拋物線解析式,經(jīng)過(guò)點(diǎn)A(-1,0),可求得a的值,由△ABD的面積為5可求出點(diǎn)D的縱坐標(biāo),代入拋物線解析式求出橫坐標(biāo),由A、D的坐標(biāo)可求出一次函數(shù)解析式;
(2)作EM∥y軸交AD于M,如圖,利用三角形面積公式,由
構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;
(1)將二次函數(shù)
)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到的拋物線解析式為
,
∵OA=1,
∴點(diǎn)A的坐標(biāo)為(﹣1,0),代入拋物線的解析式得,
,
∴
,
∴拋物線的解析式為
,即
.
令y=0,解得
,
∴點(diǎn)B的坐標(biāo)為(3,0),
∴AB=OA+OB=4,
∵△ABD的面積為5,
∴
,
∴
,
代入拋物線解析式得,
,
解得
,
∴點(diǎn)D的坐標(biāo)為(4,
),
設(shè)直線AD的解析式為
,
∴
,解得:
,
∴直線AD的解析式為
;
(2)過(guò)點(diǎn)E作EM∥y軸交AD于M,交x軸于N,如圖,
![]()
設(shè)點(diǎn)E的坐標(biāo)為(
,
),則點(diǎn)M的坐標(biāo)為(
,
)
∴
,
∴![]()
![]()
![]()
![]()
,
∴當(dāng)
時(shí),△ACE的面積有最大值,最大值是
,此時(shí)E點(diǎn)坐標(biāo)為(
,
)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將立方體紙盒沿某些棱剪開(kāi),且使六個(gè)面連在一起,然后鋪平,可以得到其表面展開(kāi)圖的平面圖形.
(1)以下兩個(gè)方格圖中的陰影部分能表示立方體表面展開(kāi)圖的是 (填A或B).
![]()
(2)在以下方格圖中,畫(huà)一個(gè)與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開(kāi)圖.(用陰影表示)
![]()
(3)如圖中的實(shí)線是立方體紙盒的剪裁線,請(qǐng)將其表面展開(kāi)圖畫(huà)在右圖的方格圖中.(用陰影表示)
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
交坐標(biāo)軸于
、
點(diǎn),點(diǎn)
在線段
上,以
為一邊在第一象限作正方形
.若雙曲線
經(jīng)過(guò)點(diǎn)
,
.則
的值為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩超市(大型商場(chǎng))同時(shí)開(kāi)業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動(dòng):凡購(gòu)物滿
元,均可得到一次摸獎(jiǎng)的機(jī)會(huì).在一個(gè)紙盒里裝有
個(gè)紅球和
個(gè)白球(編號(hào)分別為紅1、紅
、白1、白
),除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少(如表)
甲超市:
球 | 兩紅 | --紅一白 | 兩白 |
禮金券(元) |
|
|
|
乙超市:
球 | 兩紅 | --紅一白 | 兩白 |
禮金券(元) |
|
|
|
(1)列舉出一次摸獎(jiǎng)時(shí)兩球的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會(huì)選擇去哪個(gè)超市購(gòu)物?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點(diǎn)E處觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角
=
,在離建設(shè)物CD 25米遠(yuǎn)的F點(diǎn)觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角
=
(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.(參考數(shù)據(jù):
)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市銷(xiāo)售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門(mén)規(guī)定,該種玩具每件利潤(rùn)不能超過(guò)60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷(xiāo)售單價(jià)每增加2元,每天銷(xiāo)售量會(huì)減少1件.設(shè)銷(xiāo)售單價(jià)增加
元,每天售出
件.
(1)請(qǐng)寫(xiě)出
與
之間的函數(shù)表達(dá)式;
(2)當(dāng)
為多少時(shí),超市每天銷(xiāo)售這種玩具可獲利潤(rùn)2250元?
(3)設(shè)超市每天銷(xiāo)售這種玩具可獲利
元,當(dāng)
為多少時(shí)
最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮晚上在廣場(chǎng)散步,圖中線段AB表示站立在廣場(chǎng)上的小亮,線段PO表示直立在廣場(chǎng)上的燈桿,點(diǎn)P表示照明燈的位置.
![]()
(1)請(qǐng)你在圖中畫(huà)出小亮站在AB處的影子BE;
(2)小亮的身高為1.6m,當(dāng)小亮離開(kāi)燈桿的距離OB為2.4m時(shí),影長(zhǎng)為1.2m,若小亮離開(kāi)燈桿的距離OD=6m時(shí),則小亮(CD)的影長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.
![]()
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線
與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com