分析 此題只需把公共部分分割成兩個三角形,根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)發(fā)現(xiàn)兩個三角形全等,從而求得直角三角形的邊,再進一步計算其面積.
解答 解:如圖,連接AO,![]()
根據(jù)旋轉(zhuǎn)的性質(zhì),得∠BAB′=30°,則∠DAB′=60°.
在Rt△ADO和Rt△AB′O中,AD=AB′,AO=AO,
∴Rt△ADO≌Rt△AB′O.
∴∠OAD=∠OAB′=30°.
又∵AD=1,
∴OD=AD•tan∠OAD=$\frac{\sqrt{3}}{3}$.
∴陰影部分的面積=2×$\frac{1}{2}$×$\frac{\sqrt{3}}{3}$×1=$\frac{\sqrt{3}}{3}$,
故答案為:$\frac{\sqrt{3}}{3}$.
點評 本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAO=∠B′AO,從而求出∠DA0=30°是解題的關(guān)鍵,
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x2-$\sqrt{3}$x+$\frac{1}{2}$=0 | B. | x2+$\sqrt{3}$x+$\frac{1}{2}$=0 | C. | x2-$\sqrt{3}$x+1=0 | D. | x2+$\sqrt{3}$x-$\frac{1}{2}$=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2∠P+∠C=180° | B. | 2∠P+∠C=360° | C. | ∠P+2∠C=180° | D. | ∠P+∠C=180° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 出發(fā)1小時時,甲、乙在途中相遇 | |
| B. | 出發(fā)1.5小時時,乙比甲多行駛了60千米 | |
| C. | 出發(fā)3小時時,甲、乙同時到達終點 | |
| D. | 甲的速度是乙速度的一半 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com