【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=
的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(
,0)順時針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=
的圖象上,則點(diǎn)A的坐標(biāo)為_____.
![]()
【答案】(2
,2
).
【解析】
設(shè)點(diǎn)A的坐標(biāo)為(a,a),過A作AC⊥x軸于C,過A′作A′D⊥x軸于D,于是得到∠ACB=∠A′DB=90°,AC=OC=a,求得BC=
,根據(jù)全等三角形的性質(zhì)得到BD=AC=a,A′D=BC=
,列方程組即可得到結(jié)論.
解:設(shè)點(diǎn)A的坐標(biāo)為(a,a),
過A作AC⊥x軸于C,過A′作A′D⊥x軸于D,
![]()
∴∠ACB=∠A′DB=90°,AC=OC=a,
∴BC=
,
∵點(diǎn)A繞點(diǎn)B(
,0)順時針旋轉(zhuǎn)90°后,得到的點(diǎn)A',
∴∠ABA′=90°,AB=A′B,
∴∠CAB+∠ABC=∠ABC+∠A′BD=90°,
∴∠CAB=∠A′BD,
∴△ACB≌△BDA′(AAS),
∴BD=AC=a,A′D=BC=
,
∵點(diǎn)A'在y=
的圖象上,
∴
,
解得:k=8,a=2
,
∴點(diǎn)A的坐標(biāo)為(2
,2
),
故答案為:(2
,2
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點(diǎn)E.
(1)證明:直線PD是⊙O的切線;
(2)如果∠BED=60°,PD=
,求PA的長;
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)D是第一象限內(nèi)拋物線上的一個動點(diǎn)(與點(diǎn)C、B不重合),過點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BD、CD.設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.求S關(guān)于m的函數(shù)解析式及自變量m的取值范圍,并求出S的最大值;
(3)已知M為拋物線對稱軸上一動點(diǎn),若△MBC是以BC為直角邊的直角三角形,請直接寫出點(diǎn)M的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣
x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)點(diǎn)D(2,2)是拋物線上一點(diǎn),那么在拋物線的對稱軸上,是否存在一點(diǎn)P,使得△BDP的周長最小,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)連接AD并延長,過拋物線上一點(diǎn)Q(Q不與A重合)作QN⊥x軸,垂足為N,與射線交于點(diǎn)M,使得QM=3MN,若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象,經(jīng)過點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),過點(diǎn)C,D(﹣3,0)的直線與拋物線的另一交點(diǎn)為E.
![]()
(1)請你直接寫出:
①拋物線的解析式 ;
②直線CD的解析式 ;
③點(diǎn)E的坐標(biāo)( , );
(2)如圖1,若點(diǎn)P是x軸上一動點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時,可使得∠CPE=45°,請你求出此時點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是拋物線上一動點(diǎn),作QH⊥x軸于H,連接QA,QB,當(dāng)QB平分∠AQH時,請你直接寫出此時點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織七年級學(xué)生參加冬令營活動,本次冬令營活動分為甲、乙、丙三組進(jìn)行.如圖,條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖反映了學(xué)生參加冬令營活動的報名情況,請你根據(jù)圖中的信息回答下列問題:
![]()
(1)七年級報名參加本次活動的總?cè)藬?shù)為 ,扇形統(tǒng)計(jì)圖中,表示甲組部分的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)實(shí)際需要,將從甲組抽調(diào)部分學(xué)生到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,則應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若
,AC=8,求DE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場的運(yùn)動服裝專柜,對
兩種品牌的遠(yuǎn)動服分兩次采購試銷后,效益可觀,計(jì)劃繼續(xù)采購進(jìn)行銷售.已知這兩種服裝過去兩次的進(jìn)貨情況如下表.
第一次 | 第二次 | |
| 20 | 30 |
| 30 | 40 |
累計(jì)采購款/元 | 10200 | 14400 |
(1)問
兩種品牌運(yùn)動服的進(jìn)貨單價各是多少元?
(2)由于
品牌運(yùn)動服的銷量明顯好于
品牌,商家決定采購
品牌的件數(shù)比
品牌件數(shù)的
倍多5件,在采購總價不超過21300元的情況下,最多能購進(jìn)多少件
品牌運(yùn)動服?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com