如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=
,延長OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.
![]()
(1)
(2)證明見解析
【解析】解:(1)如圖,連接OA,
![]()
∵直徑CE⊥AB,∴AD=BD=2,
。
∴∠ACE=∠BCE,∠AOE=∠BOE,
又∵∠AOB=2∠ACB,∴∠BOE=∠ACB。
又∵cos∠ACB=
,∴cos∠BOD=
,
在Rt△BOD中,設(shè)OD=x,則OB=3x,
∵OD2+BD2=OB2,∴x2+22=(3x)2,解得x=
。
∴OB=3x=
,即⊙O的半徑為
。
(2)證明:∵FE=2OE,∴OF=3OE=
!
。
又∵
,∴
。
又∵∠BOF=∠DOB,∴△OBF∽△ODB!唷螼BF=∠ODB=90°。
∵OB是半徑,∴BF是⊙O的切線。
(1)連接OA,由直徑CE⊥AB,根據(jù)垂徑定理得AD=BD=2,
,由已知利用圓周角定理可得到∠BOE=∠ACB,可得到cos∠BOD=cos∠ACB=
,在Rt△BOD中,設(shè)OD=x,則OB=3x,利用勾股定理可計算出x=
,則OB=3x=
。
(2)由于FE=2OE,則OF=3OE=
,則
,而
,于是得到
,根據(jù)相似三角形的判定即可得到△OBF∽△ODB,根據(jù)相似三角形的性質(zhì)有∠OBF=∠ODB=90°,然后根據(jù)切線的判定定理即可得到結(jié)論。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com