【題目】矩形ABCD的邊AB=4,邊AD上有一點M,連接BM,將MB繞M點逆時針旋轉(zhuǎn)90°得MN,N恰好落在CD上,過M、D、N作⊙O,⊙O與BC相切,Q為⊙O上的動點,連BQ,P為BQ中點,連AP,則AP的最小值為_____.
![]()
【答案】
.
【解析】
設(shè)⊙O與BC的交點為F,連接OB、OF,如圖1所示.根據(jù)旋轉(zhuǎn)的性質(zhì)得到MN⊥BM,推出△BMN為等腰直角三角形,由全等三角形的性質(zhì)得到DM=AB=4,DN=AM,設(shè)DN=2a,則AM=2a,OF=4-a,根據(jù)勾股定理即可求得⊙O半徑,延長BA,使AH=AB=4,連接HQ,OH,過O作OG⊥AB于G,根據(jù)三角形中位線的定理得到AP=
HQ,HQ∥AP,當(dāng)HQ取最小值時,AP有最小值,當(dāng)點Q在HO時,HQ的值最小,根據(jù)勾股定理可求得OH,于是可得到結(jié)論.
設(shè)⊙O與BC的交點為F,連接OB、OF,作OR⊥DC于R,如圖所示.
![]()
∵△MDN為直角三角形,
∴MN為⊙O的直徑,
∵將MB繞M點逆時針旋轉(zhuǎn)90°得MN,
∴MN⊥BM,MB=MN,
∴△BMN為等腰直角三角形,
∵∠AMB+∠NMD=180°﹣∠BMN=90°,∠MBA+∠AMB=90°,
∴∠NMD=∠MBA,且BM=NP,∠A=∠NMD=90°,
∴△ABM≌△DMN(AAS),
∴DM=AB=4,DN=AM,
設(shè)DN=2a,則AM=2a,OF=4﹣a,
∵OR⊥DC于R,
∴DR=RN=
,
∵OR⊥DC,OF⊥BC,∠C=90°,
∴四邊形ORCF為矩形,
∴
,
BM=
,
∵BM=MN=2OF,
∴
=
,
解得:
,
∴
,
=
,
∴⊙O半徑為
,
如圖2,延長BA,使AH=AB=4,連接HQ,OH,過O作OG⊥AB于G,
![]()
∵AB=AH,BP=PQ,
∴AP=
HQ,HQ∥AP,
∴當(dāng)HQ取最小值時,AP有最小值,
∴當(dāng)點Q在HO時,HQ的值最小,
∵
,
,
∴
,
∴HQ的最小值=
,
∴AP的最小值為
,
故答案為:
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線
交
軸于點
,點
為
軸上的一個動點(點
不與點
重合),在直線
上取一點
(點
在
軸上方),使
,連結(jié)
,以
為邊在
的右側(cè)作正方形
,連結(jié)
,以
為直徑作
.
(1)當(dāng)點
在點
左側(cè)時,若點
落在
軸上,則
的長為______,點
的坐標(biāo)為_______;
(2)若
與正方形
的邊相切于點
,求點
的坐標(biāo);
(3)
與直線
的交點為
,連結(jié)
,當(dāng)
平分
時,
的長為______.(直接寫出答案)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC中,AB=AC,邊BC長為6,高AD長為4,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,則正方形PQMN的邊長為( 。
A.
B.
或![]()
C.
或
D.
或![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
的圖象的對稱軸為直線
.
(1)求
的值;
(2)將函數(shù)
的圖象向右平移2個單位,得到新的函數(shù)圖象
.
①直接寫出函數(shù)圖象
的表達(dá)式;
②設(shè)直線
與
軸交于點A,與y軸交于點B,當(dāng)線段AB與圖象
只有一個公共點時,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線
與
軸交于點
,與
軸交于點
拋物線
經(jīng)過點
、
.
![]()
(1)求點
的坐標(biāo)和拋物線的解析式.
(2)
為
軸上一個動點,過點
垂直于
軸的直線與直線
和拋物線分別交于點
、
.
①點
在線段
上運動,若以
、
、
為頂點的三角形與
相似,求點
的坐標(biāo);
②點
在
軸上自由運動,若三個點
、
、
中恰有一點是其他兩點所連線段的中點(三點重合除外),則稱
、
、
三點為“共諧點”.請直接寫出使得
、
、
三點成為“共諧點”的
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生到恩格貝
和康鎮(zhèn)
進(jìn)行研學(xué)活動,澄澄老師在網(wǎng)上查得,
和
分別位于學(xué)校
的正北和正東方向,
位于
南偏東37°方向,校車從
出發(fā),沿正北方向前往
地,行駛到15千米的
處時,導(dǎo)航顯示,在
處北偏東45°方向有一服務(wù)區(qū)
,且
位于
,
兩地中點處.
(1)求
,
兩地之間的距離;
(2)校車從
地勻速行駛1小時40分鐘到達(dá)
地,若這段路程限速100千米/時,計算校車是否超速?
(參考數(shù)據(jù):
,
,
)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.
(1)求證:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運動會于2019年9月8日至16日在鄭州舉行,據(jù)了解,該賽事每四年舉辦一屆,是我國規(guī)格最高、規(guī)模最大的綜合性民族體育盛會.其中,花炮、押加、民族式摔跤三個項目的比賽在鄭州大學(xué)主校區(qū)進(jìn)行.如圖,鐘樓是鄭州大學(xué)主校區(qū)標(biāo)志性建筑物之一,是鄭大的“第一高度”,寓意來自五湖四海的鄭大人的團(tuán)結(jié)和凝聚.小剛站在鐘樓前C處測得鐘樓頂A的仰角為53°,小強(qiáng)站在對面的教學(xué)樓三樓上的D處測得鐘樓頂A的仰角為30°,此時,兩人的水平距離EC為38m.已知教學(xué)樓三樓所在的高度為10m,根據(jù)測得的數(shù)據(jù),計算鐘樓AB的高度.(結(jié)果保留整數(shù).參考數(shù)據(jù):sin53°≈
,cos53°≈
,tan53°≈
,
≈1.73)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結(jié)論:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正確的個數(shù)有( 。
![]()
A.1B.2C.3D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com